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Abstract

This thesis is concerned with the diameter of certain word norms on S-arithmetic split
Chevalley groups. Such groups are well known to be boundedly generated by root el-
ements. We prove that word metrics given by conjugacy classes on S-arithmetic split
Chevalley groups have an upper bound only depending on the number of conjugacy classes.
This property, called strong boundedness, was introduced by Kedra, Libmann and Martin
in [24] and proven for SL,,(R), assuming R is a principal ideal domain and n > 3. We pro-
vide two ways to prove such results: First, a general argument using older results about
normal subgroups of Chevalley groups and model-theory. Second, we provide two argu-
ments to show this by way of explicit calculations for the examples of Sp,, (R) for n > 2,
Es(R) and G5(R). We also provide examples of normal generating sets for S-arithmetic
split Chevalley groups proving our upper bounds on the afore-mentioned word norms are
sharp in an appropriate sense and give a complete account of the existence of small nor-
mally generating sets of Sp,(R) and G2(R). For instance, we prove that Sp4(Z[HTﬁ])

cannot be generated by a single conjugacy class.
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Chapter 1

Main results and historical context

1.1 Historical context

Conjugation-invariant norms on groups are an old, if slightly non-standard topic in math-

ematics. They are defined as follows:

Definition 1.1.1. Let G be a group. Then a conjugation invariant norm on G is a map
v: G — [0,4+00) such that

1. for a € G : v(a) = 0 holds precisely if a = 1.
2. for a,b € G : v(ab) < v(a)+v(b), v(aba™) = v(b) and v(a) = v(a™t).

The group G is called bounded, iff for all conjugation invariant norms v on G the diameter

v(QG) is finite and unbounded if this is not the case.

A well-known example for such norms are bi-invariant Riemannian metrics on a com-
pact Lie-group G, which naturally have finite diameter, because Riemannian metrics are
continuous and G is compact. However, more often than not in the study of conjugation
invariant norms, the topology induced by those norms is not the ‘natural’ topology of the
corresponding group in question. A striking example of this is the Hofer-metric on the
hamiltonian diffeomorphism groups:

If (M,w) is a symplectic manifold, then let H : M x [0,1] — R be a compactly
supported smooth map and define vector fields {X;};c[0,1) of the form

Lx,w=dH(-,t)

for t € [0,1] and consider the corresponding flow f; : M — M fort € [0, 1]. Such diffeomor-
phisms f; are called hamiltonian diffeomorphisms and the function H is said to generate

the diffecomorphism fi;. The hamiltonian diffeomorphisms form a group Ham(M,w) and



this group admits the so-called Hofer metric:

|fllg:=  inf (max H(x,t)) — (min H(y, t))dt.

H generatesf [, z€M yeM

This norm is conjugation invariant, but the natural C''-topology on Ham(M,w) is finer
than the topology induced by the Hofer-metric. The Hofer metric has been widely stud-
ied by Polterovich [36], Wagner and Ostrover [35] and many others and it is connected
to various problems in symplectic topology and hamiltonian dynamics. Also beyond a
couple of examples, like closed surfaces for which the diameter is unbounded [36, Corol-
lary 7.2.D], it is not even known whether the Hofer metric has finite or infinite diameter in
general. There are also other conjugation-invariant norms on Hamiltonian diffeomorphism
groups as discovered by Viterbo [46] and conjugation invariant norms on contactomor-
phism groups found by Sandon [38],[39].

Less geometrically, there exist the so called fragmentation norms on compactly sup-
ported diffeomorphism or homeomorphism groups of manifolds. For example, the frag-
mentation norm on the homeomorphism group of a manifold, measures how many home-
omorphisms supported in an open ball on this manifold, one needs to write a given
compactly supported homeomorphism. So there are quite a lot of examples of such norms
in geometry and topology. More algebraically, one can use these norms to study group
theoretic properties of a group. For example the boundedness of a group is connected to

quasi-morphisms:

Lemma 1.1.2. [§] Let G be a group that admits an unbounded quasi-morphism q : G — R,
meaning there exists a D > 0 called the defect of q such that for all a,b € G

lg(ab) — q(a) — q(b)] < D

holds and the set q(G) is unbounded. Assume further that there is a finite subset S C G
with ((S)) = G. Then G is unbounded.

Proof. Define a conjugation invariant norm || - ||s : G — Ny by
lal|s := min{n € Ny| g1, ..., g, are up to conjugation elements of SUS™" and a =g, --- g, }

for a # 1 and by ||1||s := 0. Further for a € G the limit

(oo(a) := lim a(a”)

n—oo M

is well-defined and defines a conjugation-invariant quasi-morphism ¢, : G — R, that is

q00(aba_1) = (o (b>



holds for all a,b € G. Further, ¢, is invariant under inverses and still unbounded.
We leave these claims as an excercise to the reader. So ¢ itself can be assumed to be
conjugation-invariant and with defect D. Also choose K := max({|q(s)| | s € S} U{D}).
The number K is greater than 0 : This is the case because if D can be chosen as 0, then
q : G — R is a homomorphism. Hence if ||¢(s)]| = 0 and so ¢(s) = 0 were to hold for all
s € S as well, then the fact that the conjugacy classes of S generate G and R is abelian
would imply that ¢(G) = {0} and so ¢ would not be unbounded. Next, let a € G — {1}
be given with ||al]|s = n and choose sy,...,s, € SUS ! and ¢gy,...,9, € G with

n
_ -1
a = giSig; -
i=1

Then observe
lq(a)| = lg([ [ isig: D) < (n =)D+ la(gisig; V)]
i1 i=1

=(n—=1)D+> lq(si)l <nD+nK — D < 2nK = 2K||al|s.

i=1
But ¢ is unbounded and K > 0, so || - ||s is unbounded as well. O
Further, one can show the following using a similar argument:

Lemma 1.1.3. Let a group G with a finite subset S with ((S)) = G and a group H with
a conjugation invariant norm v be given and let 1) : G — H be a homomorphism. Further

set K :=max{v(y(s))| s € S}. Then for all g € G :

v(g) < Klg]|s-

This implies for example that a bounded group generated by finitely many conjugacy
classes, when acting by a hamiltonian group action on a symplectic manifold (M, w) must
have bounded image in Ham(M, w) with respect to the Hofer-metric. These lemmas also
indicate the importance of the so called conjugation generated word norms || - ||s for S a
finite set. One can ask more generally how such conjugation generated word norms || - ||s
on a group G behave. For example, does the diameter ||G||s of || - ||s being finite depend

on the S in question or not? This is not the case:

Lemma 1.1.4. [Z], Corollary 2.5] Let a group G with a finite subset S with ((S)) = G.
Then G is bounded precisely if the diameter of the conjugation generated word norm || -||s

18 finite.

However, boundedness is still not a property that is well behaved from a geometric

group theory viewpoint. For example boundedness of a group does not pass to finite index
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sub or supergroups in general.

Lemma 1.1.5. [2], Ezample 2.8] The group D, = Fy x Fy is bounded and its index
2-subgroup 7 s not.

It is well-known that the kernel ker(j3) of the comparison map j2 : HZ(G,R) —
H?(G,R) between bounded cohomology in degree 2 and ordinary group cohomology is
isomorphic to the space of homogeneous quasi-morphisms ¢ : G — R modulo the space
of actual homomorphisms ¢ : G — R. Thus a group being bounded implies that j2 is
injective. However, these two properties are not equivalent: Each homogeneous quasi-
morphism Z — R is a homomorphism and so jZ is injective, but the group Z is obviously
unbounded.

On the other hand, there is a classical result due to Burger and Monod [9, Corollary 1.3]
stating the injectivity of j2 for cocompact, irreducible lattices G in higher rank Lie groups
and in a lot of cases one can also show that a lattice is bounded using straightforward
calculations in the lattice itself as done by Gal, Kedra and myself [I9]. To my knowledge,
it is an open problem whether all lattices in groups of higher rank are bounded.

Assuming that a group is bounded, one can further ask how the diameter of G with
respect to || - ||s depends on the chosen finite set S normally generating G. If G is a finite
simple group, this is related to the classical question of covering numbers: For such a
group G, its covering number cn(G) is the smallest natural number n € N such that for
every non-trivial conjugacy class C, one has G = C". If S # {1} is a subset of the finite,
simple group G, then ||G||s < cn(G) holds. Covering numbers have been extensively
studied for various kind of finite simple groups for example Brenners FINASIG-papers
[7] contain various different covering results for different finite simple groups, Lev’s paper
[26] contains covering results for PSL,, (K) for sufficiently large fields K and [4] is a survey
about covering numbers containing various standard arguments and a table of covering
numbers for all finite, simple groups with less than 1.000.000 elements. More recently,
there have been a couple of remarkable papers about the asymptotics of covering numbers

for finite simple groups by Liebeck and his collaborators [27],[25].

However, the first paper that studied conjugation invariant norms on groups named
as such is presumably the Burago, Ivanov and Polterovich paper [8]. The paper estab-
lishes some general facts about conjugation invariant norms, their connection to quasi-
morphisms and boundedness and uses these norms to determine commutator lengths on
various diffeomorphism groups of spheres and 3-manifolds. More importantly, the line of
ideas that lead to this thesis started with |8, Example 1.6]. There it was observed that
the group SL,(Z) is bounded for n > 3. This follows from two facts: First, the following

delightful commutator formula for elementary matrices:

Elg(l’) = <E12(1)7 E23(£L'))

8



for all x € Z. This implies v(E3(x)) < 2v(Ej2(1)) for a conjugation invariant norm
v on SL,(Z). Second, each element A of SL,(Z) can be written as a product of con-
jugates of matrices of the form Ej3(x) for x € Z with a number of factors K indepen-
dent of A according to a result by Carter and Keller [10]. These two facts, then imply
v(SL,(Z)) < 2Kv(FE12(1)) and hence boundedness of SL,(Z). Later, it was observed by
Gal, Kedra and myself in [19] that this idea generalizes immediately to other higher rank
S-arithmetic Chevalley groups and finite index subgroups of them. The example of SL,,(Z)
also indicates the connection to bounded generation by root elements, when studying the

norms || - ||s on Chevalley groups.

But even knowing that SL,(Z) is bounded for n > 3, it is still unclear how the
diameter ||SL,,(Z)||s depends on the finite set S in question. Morris [30] has shown for
any localization R of an order in a ring of algebraic integers (think a localization of Z[2i]),
that for n > 3 the diameter ||SL,(R)||s has an upper bound only depending on the
cardinality of S, as well as the ring R and n. This fascinating paper really highlights the
connection to bounded generation result and I speak extensively about it in Chapter [6]
However, it still does not describe the asymptotic of ||SL,(R)||s in |S]. This question was
answered by Kedra, Libman and Martin at least in the special case of rings of S-algebraic
integers with class number 1. Class number 1 merely means that the ring is a principal

ideal domain, but rings of S-algebraic integers are defined as follows:

Definition 1.1.6. |32, Chapter I, §11] Let K be a finite field extension of Q. Then let T’
be a finite subset of the set V' of all valuations of K such that 71" contains all archimedean

valuations. Then the ring Or is defined as
Or ={ac K|YveV —-T:v(a) >0}
and Or is called the ring of T-algebraic integers in K and rings O of this form are called
rings of S-algebraic integers.
The answer given by Kedra, Libman and Martin is:

Corollary 1.1.7. [2], Corollary 6.2] Let R be a ring of S-algebraic integers with class
number 1 and let n > 3 be given. Then SL,(R) is normally generated by the single element
Ei (1) and

1. for all finite, normally generating subsets S of G, it holds

ISEn(B)[s < (4n + 51)(4n + 4)[S].

2. for each k € N there is a finite normal generating set Sy of SL,(R) with |Sk| = k
and ||SL,(R)|s, > k.



This finally leads to the very questions, I set out to answer in this thesis: First, can the
explicit bounds on the asymptotic of ||SL,(R)||s also be shown for more general rings of
S-algebraic integers R that are not principal ideal domains? And second, do these results
hold for more general simply-connected Chevalley groups G(®, R) besides SL,, for n > 37
The groups G(®, R) are defined in Section but for the sake of this introduction, one
should think of classical matrix groups like SL,,, Sp,,, defined by way of an irreducible root

system ®.

1.2 Main results and methods

I give positive answers to both of these questions and my main result is the following;:

Theorem 1.2.1. Let ® be an irreducible root system of rank at least 2 and let R be
a commutative ring with 1. Additionally, let G(®, R) be boundedly generated by root
elements and if ® = Cy or Go, then further assume (R : 2R) < oo. Then there is a
constant C(®, R) € N such that for all finite, normally generating subsets S of G, it holds

|G(®, R)||ls < C(®, R)|S].

Remark 1.2.2. Root elements are natural generalizations of the elementary matrices £;;(x)
in SL,,. Such root elements are usually denoted by 4(x) with varying ¢ € ® and = € R.
Most notably

es(T1 + T2) = £4(1)E4(22)

holds for all zy,25 € R. I define them and bounded generation by root elements in

Section 2.2

The assumptions in Theorem [[.2.1] are quite general so the theorem can in principle
be applied to a lot of different rings. The two main examples, I talk about in this
thesis are rings of S-algebraic integers and semi-local rings. First regarding rings of S-

algebraic integers, I show in Chapter [ that the following generalization of the first part
in Corollary holds:

Theorem Let R be a ring of S-algebraic integers in a number field and ® an
irreducible root system of rank at least 2. Then there is a constant C(®,R) > 1 such

that for each finite, normal generating set S of G(®, R) the inequality |G(®, R)||s <
C(®, R)|S| holds.

Second, I state some results about boundedness of G(®, R) for R a semi-local ring:

Theorem [5.2.4. Let R be a commutative, semilocal ring with 1 and let ® an irreducible
root system of rank at least 2. Furthermore, assume that (R : 2R) < oo, if & = Cy or Gs.

10



Then there is a constant K(®, R) such that for each finite, normal generating set S, the
inequality G||(®, R)||s < K(®, R) holds.

Theorem is essentially a corollary of Theorem and the fact that for R a
semi-local ring G(®, R) is boundedly generated by root elements.

The proofs of Theorem and Corollary are similar, so let us describe them
briefly in the case of ® # (3 or G5: First, one obtains arbitrary root elements ,(z)
as products of conjugates of the finite normally generating set S with the number of
factors proportional to |S|. Then secondly, one uses bounded generation of the group
by root elements, as shown by Tavgen [42] and Carter, Keller [10], to finish the proof.
The difference of the two strategies lies in how one accomplishes the first step. To prove
Corollary [[.1.7, Kedra, Libman and Martin use extensive matrix calculations and rely
heavily on the underlying ring being a principal ideal domain to construct root elements
(or elementary matrices) in this case. Rather then using such explicit calculations, my
strategy to show the first step considers for an element A of S the normal subgroup of
G(®, R) generated by A. But the structure of such normal subgroups are well-understood
for general commutative rings. For example, there is the following general theorem by
Abe:

Theorem m [2, Theorem 1,2,3,4] Let ® be an irreducible root system that is not
Ay, Cy or Gy and let R be a commutative ring with 1. Then for each subgroup H C G(®, R)

normalized by the group E(®, R), there is an ideal J C R and an additive subgroup of L
of J such that E(J,L) C H C E*(J,L).

Remark 1.2.3. 1 define the subgroups E(®, R), E(J, L) and E*(J, L) in Section but

crucially F(.J, L) contain many root elements as long .J is not trivial.

Thus considering H as the normal subgroup generated by A, certain root elements are
contained in E(J, L). Hence one can describe an inconsistent theory in first order logic
that describes that these root elements cannot be written as a product of conjugates of
A or A~! with any finite number u of factors. But then Godel’s Compactness Theorem
[37, Theorem 3.2| implies that already a finite sub-theory is inconsistent. This in turn
implies the possibility of writing these root elements as products with a certain bounded
number of conjugates of A or A™! as factors with the bound on the number of factors
independent of the actual A € G(®, R) in question. Then combining the various root
elements obtained for varying A € S, one can finish the proof of the first step.

This at least is the strategy for ® # C5 or Go. If @ is either of those, then the first step,
using results different from Theorem instead, does not quite yield all root elements.
Instead, it yields that the set

Qc, = {Aes(22)A ¢ € Cy,z € R, A € Spy(R)}

11



in case of ® = (5 and

Qc, ={Ac4(22) A7 ¢ € Gy short,z € R, A € Go(R)}
U{Agy(x)A7 "¢ € Gy long,z € R, A € Go(R)}

in case of ® = G, are bounded with respect to || - ||s with a bound proportional to
|S]. Then I use the remaining assumption of (R : 2R) being finite to finish the proof
of Theorem in this case. In any case, I want to emphasize the difference between
Sp4(R), Go(R) and all other cases, because it will appear again and again in this thesis.

Ultimately, what this proof strategy shows is that rather than Corollary and
Theorem being results about geometric group theory as initially suspected, they are
much more directly connected to classical algebraic K-theory. A natural interpretation of
Theorem [1.2.]is to consider it as a quantitative version of results about normal subgroups
in Chevalley groups.

Regarding the question of explicit upper bounds on ||G(®, R)||s however as they are
stated in Corollary [I.1.7] T want to note that my argument to prove Theorem [1.2.1] cannot
yield them. The reason for this is that the proof is non-constructive and does not provide
an explicit algorithm to construct root elements instead merely showing that it is possible
to do so. Instead, I give two different methods to calculate upper bounds explicitly. Both
methods, the first quite similar to the matrix calculations done to prove Corollary
and the other dependent on a variant of the Bruhat decomposition [41, Chapter 8, p. 68,
Corollary 1], rely on the ring R being a principal ideal domain. This is due to the fact that
both require at different places, the possibility to represent the greatest common divisor
of two elements of R as a principal ideal. In any case, I prove for example the following

explicit result using matrix calculations:
Corollary |6.1.6 Let R be a ring of S-algebraic integers with class number one andn > 3.
Further set

135, if R is a quadratic imaginary ring of integers or 7

12, if R 1is neither of the above

A(R) :=

Then ||Spe,(R)|ls < 192(1 + 5n)(12n + A(R))|S| holds for each finite, normal generating
S of Spyn(R).

There are three remarks, I want to make regarding this result: First, the proof uses
R being of stable range at most 2: Namely, I use that according to Proposition [5.1.4]
the decomposition Sp,, (R) = (UT(C,, R)U ™ (C,, R))*Sp,,(R) holds for R a ring of stable
range at most 2 to improve the asymptotic of bounded generation by root elements from
the usual one that is quadratic in n appearing for example in Tavgens paper [42] to one

that is under conjugation linear in n. Second, if one were interested in providing explicit

12



results for more general rings of S-algebraic integers and not just principal ideal domains,
than the clearest strategy would be to use these stable range conditions for R by adapting
the proof of Bass result [5, Theorem 4.2(e)| about normal subgroups of SL, (R).

Third, as indicated by the decomposition Sp,,(R) = (U (C,,, R)U(C,, R))*Sp,,(R)
and the previous remarks on the proof of Theorem [I.2.1) one would expect a difference
between the cases n = 2 and n > 3 for Sp,,(R).

In fact, the situation for n = 2 is more subtle and depends on number theoretic
properties of the ring R in question, more precisely on the way the ideal 2R factors
into prime ideals in R. In Chapter [6] I provide upper bounds on ||Sp,(R)||s for rings of
algebraic integers R with the property that each element of R can be written as a sum
of an element of 2R and a unit by imitating the proof of the Bruhat-decomposition for

fields in Steinberg’s lecture notes [41]. For example, I show the following statement:

Proposition [6.2.13 1. Let S be a finite, normal generating set of Sp,(Z). Then
1Sp4(Z)||s < 5+ 248064]S)|.

2. Let S be a finite, normal generating set of Sp4(Z[1+‘2/j3]). Then

1 N/ —
ISp, (Z {%3}) s < 4+ 248064|5].

Using the principal ideal domain version of the Bruhat decomposition [41l Chapter 8,

p. 68, Corollary 1] mentioned before, T also prove the following two results:

Proposition [6.3.6 1. Let S be a finite normal generating set of Go(Z). Then

1G2(Z)||s < 820989066245 + 1.

2. Let S be a finite normal generating set of GQ(Z[%TB]). Then

1+ /=3
G2 (Z [%D s < 61510897152/ 3.

As mentioned, there is also an auxiliary step involved in proving Theorem for
G2(R), but this additional step is actually easier and less dependent on number theoretic
properties for Go(R) than for Sp,(R). This is the case, because in some sense the set Q¢,
is much larger than Q)¢,.

I also prove the following quantitative result for Fg(R) :

Theorem Let R be a ring of S-algebraic integers with class number one. Further

set

A(R) 154, if R is a quadratic imaginary ring of integers or 7
‘ 117, if R is neither of the above

13



Then Ap(Eg(R)) < 120 - 60" A(R)k holds for all k € N.

Comparing the bounds obtained from the decomposition [41, Chapter 8, p. 68, Corol-

lary 1], like Theorem and the ones in Corollary or Corollary one imme-
diately notes that Theorem is worse by several orders of magnitude. However, using

the Bruhat decomposition [41, Chapter 8, p. 68, Corollary 1| has the advantage of being
independent of any representation of the underlying groups, which makes them easier to

work with for exceptional root systems ® like Fg and Gs.

But Corollary does not only provide an upper bound on ||SL,(R)||s, it also states
the existence of normal generating sets Si of any given cardinality £ € N with diameter of

|| -||s, being at least k. In Chapter[7} I prove the following generalization of this statement:

Theorem [7.1.5 Let R a Dedekind domain with finite class number and at least k distinct

mazimal ideals be given. Further let ® be one of the following root systems:
1. A, forn > 2,
2. B, forn >3,
3. C, forn >3,
4. D, forn >4,
5. Fg, B7, By or Fy

such that G(®, R) is boundedly generated by root elements. Then there is a normal gen-
erating set Sy of G(®, R) with |Sk| =k and

1. |G(An, R)||ls, > k(n+1) forn>2,

2. ||G(By, R)||s, > k(n+1) forn >3,

3. |G(Cn, R)||s, > 2nk forn >3,

4. ||G(Dn, R)||s, > kn forn >4,

5. |G(®, R)||s, > 2k for ® = Eg, By, Eg, Fy.

Notably, instead of just providing an asymptotic in &, these lower bounds also provide
an asymptotic proportional to the rank of the root system. The way, these lower bounds
are shown, not only here but also in Corollary is by constructing root elements
{ep(ri)lt = 1,...,k} = Sy whose arguments ry,...,7; € R have a large set of common
prime divisors 7. Then one reduces modulo these prime divisors and considers the induced

conjugation generated word norm on [[,., G(®, R/P).
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In the proof of Corollary it was then observed that the induced conjugation
generated word norms on the factors of [[,_, G(®, R/P) are not trivial. I on the other
hand count the dimension of the 1-eigenspaces of the matrices induced on the the factors
[Iper G(®, R/P) by Sk to obtain the lower bound proportional to the rank of the root
system.

The situation for Sp,(R) and G5(R) is again more complex. Instead of there being nor-
mal generating set of each size, the situation is restricted by number theoretic properties

of R. Namely, I show the following:

Theorem Let ® be C5 or Gy and let R be a ring of S-algebraic integers in a
number field. Further define

r:=r(R) = |{P| P divides 2R and R/P = Fy}|.

1. Then for all k € N with k > r(R), there is a normal generating set Sy of G(®, R)
such that ||Spy(R)||s, = 4k + r(R) and |G2(R)||s, > 2k holds.

2. Then there is no normal generating set of G(®, R) with less than r(R) elements

Showing that there are no normal generating sets of, say Sp,(R), with less than
r(R) elements is straight forward. It amounts to proving that there is an epimorphism
Spy(R) — FZ(R) and so any normal generating set of Sp,(R) with less than r(R) ele-
ments would give rise to a generating set of IFQ(R) with less than r(R) elements. But such

generating sets clearly cannot exist. For example, there is the following corollary:

Corollary Let D be a square-free integer and R the ring of algebraic integers in
Q[VD] and let G := Sp,(R) or Go(R) be given.

1. If D =2,3,5,6,7 mod 8, then G can be generated by a single conjugacy class.

2. If D =1 mod 8, then G cannot be generated by a single conjugacy class, but there

are two conjugacy classes C1,Cy in G generating G.

Somewhat surprising to me is the first claim of Theorem that the size of 7(R)
is the sole obstruction to the existence of normal generating sets in Sp,(R) and G2(R).
The proof of this is slightly involved. Namely, I analyze the additive subgroup generated
by units in the ring R/2R and conclude that the prime factors of 2R with residue field

bigger than Fy do not matter when constructing normal generating sets.

Last, I want to talk about possible generalizations of the main results and some obvious
problems raised by the results. For example, both Theorem [[.2.1] and Theorem [5.2.4]
contain the assumption that (R : 2R) is finite if & = Cy or Go. While this is not a

problem for the main application of rings of S-algebraic integers, it raises the question,
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how the situation looks for, say rings of S-algebraic integers in global fields of characteristic
2 and whether the assumption is really necessary. In this context, I prove the following

result indicating that the assumption of (R : 2R) being finite is not necessary in all cases:

Theorem Let F be a finite field, P a prime ideal in F[T| and R the localization
of F[T] at P. Then there is a constant K(R) such that for each finite normal generating
set S of Sp,(R), the inequality ||Spy(R)||s < K(R) holds.

The proof is slightly different than the one of say Theorem and uses the as-
sumption char(R) = 2 extensively. Ultimately though, the proof of Theorem shows
that even if in the case that the ring R in question has char(R) = 2, one still obtains
strong boundedness for Sp,(R) under the sole assumption of bounded generation by root

elements for Sp,(R).

Also there is the question whether Theorem can be generalized to other arithmetic
lattices. While I do not give a general statement about this, I do show the following

theorem indicating that this might very well be the case:

Theorem Let R be a ring of S-algebraic integers and let H be a subgroup of finite
index in SL,(R) for n > 3. Then there is a constant C(H) € N such that for each finite,
normal generating set S of H, the inequality ||H||s < C(H)|S| holds.

The proof is quite similar to the proof of Theorem in the case of Sp,(R) or G2(R).

1.3 Structure of the thesis

As a document, the thesis is structured as follows: In Chapter 2 I define all needed
notions like split Chevalley groups, their congruence subgroups and root elements, level
ideals and the word norms.

In Chapter 3] T give a more precise formulation of Theorem and prove it for
general split Chevalley groups of higher rank using model theory and Godel’s Compactness
Theorem. I also lay the ground work to talk about explicit bounds on the diameters
|G(®, R)||s by defining the main constants L(®), Q(P, R) and in case of & = Cy or
G additionally the constants K(®, R) and A (G(®, R)/Ng) needed to provide explicit
upper bounds.

In Chapter {4} I present two different methods to obtain an upper bound on L(®) in
case that R is a principal ideal domain. The first method is by way of matrix calculations
and is shown for the example Sp,,(R) for n > 3 and Sp,(R). The second method uses
a version of the Bruhat decomposition in G(®, R) for R a principal ideal domain and is
shown for the examples Go(R) and Fg(R).
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In Chapter [5] I talk about stable range conditions for commutative rings, how they can
be used to obtain decompositions for Chevalley groups and to give a first step to obtain
bounds on Q(®, R) in certain cases. Further, this chapter treats the case of semi-local
rings and talks about boundedness properties in positive characteristic to an extent.

Chapter [0] talks about bounded generation results for rings of S-algebraic integers and
uses them to prove Theorem and to provide explicit upper bounds on ||Sp,, (R)|s
for n > 3 by using the discussion of the previous two chapters. Furthermore, Chapter [6]
provides upper bounds for K (Cs, R) and K (G2, R) as well as for A (G(Cs, R)/N¢,) and
Aw(G(Ge, R)/Ng,) to provide upper bounds on ||Sp,(R)||s and ||G2(R)||s in special cases
of rings of S-algebraic integers, called 2R-pseudo-good rings. For example, this chapter
contains my proofs of Proposition and Proposition Lastly, I talk in this
chapter about Morris’ paper [30] and his results to some extent.

In Chapter 7] T explain how to construct the normal generating sets required to prove
Theorem and Theorem [7.2.1]

In Chapter [8] I prove Theorem and talk about possible issues and ideas to
generalize my results.

In Appendix [A] T have for the convenience of the reader collected various statements
and definitions regarding root systems used throughout the thesis. Appendix [B| describes
the exceptional isomorphism of Sp,(Fy) and Sg and Appendix [C| contains proofs of results

in the thesis that for various reasons did not fit into the thesis proper.
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Chapter 2
Definitions and basic properties

This chapter is divided into three sections. In the first section, we define the split Cheval-
ley groups studied in this thesis. In the second section, we define special element of split
Chevalley groups, called root elements and describe some of their properties. In the third
section, we define the level ideals of elements of split Chevalley groups and explain their

connection to central elements.

But first, we introduce the notions of boundedness and conjugation invariant word
norms we study in this thesis anew:

Definition 2.0.1. Let G be a group.

1. The notation A ~ B for A, B € GG denotes that A, B are conjugate in G. Further-
more, we define AP := BAB~! for A, B € G.

2. For S C G, we define ((S)) as the smallest normal subgroup of G containing S.
3. A subset S C G is called a normally generating set of G, if ((S)) = G.

4. The group G is called finitely normally generated, if a finite normally generating set

S exists.

5. For k € N and S C G define the following set

Bg(k) := U {1 xVj e {1,... i} : x; or ;" are conjugate to elements of STU{1}.
1<i<k

Further set Bg(0) := {1}. If S only contains the single element A, then we write
Ba(k) instead of Byay(k).

6. Define for a set S C G the conjugation invariant word norm || ||s : G — NoU{+o00}
by
|Alls := min{k € No|A € Bs(k)}
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for A € ((S)) and by [|A||s := 400 for A ¢ ((S)). The diameter ||G||s = diam(]|-||s)
of G is defined as the minimal N € N, such that ||A]|s < N for all A € G holds, or

as +oo if there is no such N.

7. Define for k € N the invariant
AW(G) = sup{diam(] - [ls)| S € G with |S] <k, {($)) = G} € No U {oc}

with Ax(G) defined as —oo, if there is no normally generating set S C G with
|S| < k.

8. Define the invariant
Ao (G) := sup{diam(|| - ||s)| S C G finite with ((S)) = G} € Ny U {0}

with A, (G) defined as —oo, if there is no finite, normally generating set S C G.

9. The group G is called strongly bounded, if Ay(G) is finite for all k& € N. It is called
uniformly bounded, if Ay (G) is finite.

Remark 2.0.2. Note Ap(G) < Aps1(G) < A(G) holds for all k£ € N.

We will also use the following lemma throughout the thesis, usually without explicit

reference:

Lemma 2.0.3. Let G be a group and let a,b,x € G be given. Then
1. (ab,z) = (b,x)" - (a,x) and
2. (ab,x) ~ (b,z) - (x,a™ ")

hold.

Proof. Observe that

(ab,z) = abx(ab) 'z~ =a (bzb™") -a 'z = a (bab 2 - (wa 2T

=a(b,z)a”" - (ava™'z™") = (b,2)" - (a, 2).
This yields the first claim. But (b, z)* - (a, z) is conjugate to
(b,z)-a (a,z)a = (b,x)a 'aza 'z a = (b,x) - (z,a")

and this yields the second claim. O]

19



2.1 Simply connected split Chevalley groups

To define split Chevalley groups, we will first define the Chevalley-Demazure group
scheme. We do not prove various statements in the course of this definition. For a
more complete description please consider [11] and [41, Theorem 1, Chapter 1, p.7; Theo-
rem 6(e), Chapter 5, p.38; Lemma 27, Chapter 3, p. 29|. Also, we use various claims about
root systems and Weyl group and have collected some of these statements in Appendix [A]

for the convenience of the reader.

Let G be a simply-connected, semi-simple complex Lie group and 7" a maximal torus in
G with associated irreducible root system ®. Further, denote by II a system of positive,
simple roots of ®, by g the corresponding complex semi-simple Lie-algebra of G. The
Cartan-subalgebra corresponding to T" will be denoted by h and the corresponding root
spaces in g by g, for ¢ € ®. These choices of Cartan-subalgebra and (simple, positive)
roots will be fixed throughout the thesis. In particular, it will always be clear which roots
in ® are called positive and simple. We will usually denote the positive roots in ® by ®*

and the negative ones by ®~. The Lie-algebra g has a so-called Chevalley basis

{Xs € 8o} seay U {Ha € b}acm
such that for all ¢,1 € ® and « € II the following conditions hold:

(a) [Ha, Xy] = ¢(Ha) Xy and ¢(H,) € Z
(b) (X4, X_y] € P ZH.,

a€ll
(¢) [Xg, Xy| = £(r + 1) Xty if ¢+ € @ and r := max{i € Ny|¢p — i) € @}
(d) [Xg, Xy] =0, if g+ 1) #0and ¢+ ¢ @

Chevalley-basis are unique up to signs and automorphisms of g. Furthermore, one sets
(A, ) :== A\(H,,) for any linear map A : h — C and « € II.

For each faithful, smooth representation p : G — GL(V') for a complex vector space

V', there is a lattice V7 in V' with the property:

dp(X,)*
%(VZ)CVZforallng@andeO.
Fixing a minimal generating set {v1,...,v,} of Vz, then defines functions ¢;; : G — C

forall 1 <4,57 <n by:

p(g)(vy) = Ztij (9)vi,
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because the set {v1, ..., v,} also defines a C-basis of V. The functions ¢;; generate a Z-Hopf
algebra called Z[G] by way of the multiplication in G and Z[G] defines the Chevalley-

Demazure group scheme by
G(®,-) : R— G(®,R) := Homz(Z|G], R)

with the group structure on G(®, R) given by the Hopf-algebra structure on Z[G]. For a

ring homomorphism R — S, the corresponding group homomorphism
G(®, R) = Homz(Z|G], R) — Homgz(Z[G], S) = G(®, 5)

is obtained by postcomposing with the ring homomorphism R — S. The group scheme
G(®,-) does not depend up to isomorphism on the choices of Chevalley basis, faithful

representation p and lattice V7.

Further note, that the ring Z[y,;] is a finitely generated Z-algebra and Z is noetherian.
Hence the polynomial ring in several unknown Z[y;;] is noetherian and hence there is a
finite collection of polynomial functions P C Z[y,;| such that Z[y;;]/(P) = Z[G] with the
isomorphism given by y;; — t;; and the Hopf-algebra structure on Zly;;|/(P) given by

Yij + (P) (Z Yir @ Yrj) + (P).

Using this, one can equivalently define G(®, R) as a subgroup of GL,,(R) by setting:
G(®,R):={A e R""|Vpe P:p(A) =0}.

In this notation, for another ring S with a ring homomorphism R — S, the induced maps
G(®,R) — G(®,S5) are obtained by entry-wise application of the ring homomorphism
R — S. We will use mostly this interpretation of G(®, R) in the course of this thesis and
also we will use the notation P(A) = 0 to denote that p(A) = 0 holds for all p € P.

Remark 2.1.1. In terms of algebraic groups, the group G(®, R) is the group of R-points
of the Z-defined group scheme G(®,-).

2.2 Root elements

Next, we will define the root elements of Chevalley groups. Again, we do not give all

details. Fix a root ¢ € ® and observe that for Z € C arbitrary the following function is
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an element of p(G) C GL(V) :
i": Zdp X¢
k=0

Further p(e4(Z)) in GL(V') has coordinates with respect to the basis {vy,...,v,} that are

polynomial functions in Z with coefficients in Z. This yields a ring homomorphism
eg 1 LG — Z|Z].
By precomposing, this defines another map as follows:
g4 : Homy(Z[Z], R) — Homy(Z|G], R) = G(®, R)

Lastly, the root elements ¢4(x) € G(®, R) for x € R are defined as the image of the map
x: Z|Z] = R,Z — x under the map ¢,. The element € R in question is often refered
to as the argument of e4(x). We also denote the subgroup

(eo(2)| © € R)

of G(®, R) by ¢4 or €4(R). We refer the reader to [4I] for further details regarding root
elements.

Also note the following property:

Definition 2.2.1. Let R be a commutative ring with 1. Then G(®, R) is boundedly
generated by root elements, if there is a natural number N := N(®, R) € N and roots
®1,...,¢n € O such that for all A € G(P, R), there are ay,...,ay € R (depending on A)
such that:

N
A = H 5¢i(ai).
i=1

Further, we define the following two word norms:

Definition 2.2.2. Let R be a commutative ring with 1 and ® an irreducible root system
such that G(®, R) is generated by root elements. Then define the two sets

EL := {e,(t)| t € R, € ®} and ELg := {Ae4(t)A7'|t € R,p € d,A € G(P,R)}.

Then

1. define the word norm || - || : G(®, R) — Ny as ||1]|g := 0 and as

| X|leL, == min{n € N|3A;,..., A, € EL: X = A4;--- A}
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for X #£ 1.

2. define the word norm || - [|gr,, : G(®, R) = Ny as |[1]|g, := 0 and as
| X|eL, ;= min{n € N|FA;,..., A, €ELg: X = A1 --- A, }

for X # 1.

Remark 2.2.3. If G(®, R) is boundedly generated by root elements than both the diameters
|G(®, R)|ler and ||G(®, R)||gL, are always finite, because

holds. However, ||G(®, R)| gL, might be smaller than ||G(®, R)||eL.

The group elements ,(t) are additive in t € R, that is e4(t + s) = €,(t)e(s) holds
for all t,s € R. Further, a couple of commutator formulas, expressed in the next lemma,
hold. We will use the additivity and the commutator formulas implicitly throughout the

thesis usually without reference.

Lemma 2.2.4. [21, Proposition 33.2-33.5] Let R be a commutative ring with 1 and let ®
be an irreducible root system of rank at least 2. Let o, B € ® be roots with o+ 8 # 0 and
let a,b € R be given.

1. If a+ B ¢ ©, then (en(a),e5(b)) = 1.

2. If a, B are positive, simple roots in a root subsystem of ® isomorphic to As, then
(e5(b), cala)) = eatp(£ab).

3. If a, B are positive, simple roots in a root subsystem of ® isomorphic to Cy with «

short and B long, then

(earp(b);cala)) = €anyp(£2ab) and
(e5(b),€a(@)) = carp(Fab)esass(£a’d).

4. If a, B are positive, simple roots in a root system ® isomorphic to Gy with o short

and 3 long, then

(€5(b),€a(@)) = carp(Fab)esass(£a’b)esars(£a°b)esar0s(£a’D?),
(Catp(b),€al@)) = €2015(F2aD)es0 4 5(£30°b) 30125 (£3ab?),
(e20+5(b), €a(a)) = 3a+5(£3ab),
(€3a+5(b), e5(a))

(

£2045(0); €a1p(a)) = Esarap(£3ab).

= £34+4(Fab) and
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Remark 2.2.5. The signs before the arguments on the right hand side of the above com-
mutator formulas might vary depending on the choice of the Chevalley basis. These issues
are commonly referred to as pinning. This problem will not be resolved in this thesis, due

to the fact that our norms are invariant under taking inverses anyway.
Before continuing, we will define the Weyl group elements and diagonal elements in

G(P, R):

Definition 2.2.6. Let R be a commutative ring with 1 and let ® be a root system. Define
for t € R* and ¢ € ® the elements:

wy(t) = eg(t)e—g(—t " )ey(t).

We will often write w, := wy(1). We also define hy(t) := wy(t)wy(1)~! for t € R* and
p e P

Remark 2.2.7. Let II = {ay,...,a,} be a system of simple, positive roots in the root
system @. If w = wg, - w,, is an element of the Weyl group W(®) as defined in
Appendix , then there is an element w € G(®, R) defined by w := wq, (1) - - wa, (1).
We will often denote this element w of G(®, R) by w as well.

Using these Weyl group elements, we can obtain the following lemma:

Lemma 2.2.8. Let R be a commutative ring with 1 and ® an irreducible root system. Let
¢, € ® and x € R be given. Then for each S C G(®, R), one has

lea(@)lls = llewaie)(@)l]s-

Here the element wo () is defined by the action of W(®) on ® from Appendiz [A]
Proof. This is a direct consequence of [41, Chapter 3, p. 23, Lemma 20(b)]. ]

However according to Proposition for ® an irreducible root system and ¢, ¢ €
® two roots of the same length, there is an element w € W(®) such that w(¢;) = ¢o.
Hence Lemma implies:

Lemma 2.2.9. Let R be a commutative ring with 1 and ® an irreducible root system.
Further let ¢1, ¢ € ® be two roots of the same length and let x € R be given. Then for
each S C G(®, R), one has

€6, (2)]s = lleg, ()]s
We will use these two lemmas throughout the thesis usually without explicit reference.
In particular, Lemma implies for ® an irreducible root system, ¢ € ®, k € N and

S C G(®, R), that the set
{z € Rf e4(x) € Bs(k)}
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only depends on the length of ¢ and not on the particular ¢ in question. But as seen in
Proposition there are at most two root lengths in any irreducible root system @

and hence the following sets are well-defined:

Definition 2.2.10. Let R be a commutative ring with 1 and ® an irreducible root system
and let S C G(®, R) be given. Then for k£ € N

1. define the subset €4(S, k) of R as {z € R| e4(z) € Bs(k)} for any short root ¢ € @,

2. define the subset ¢/(S,k) of R as {z € R| 4(z) € Bs(k)} of R for any long root
¢ e,

3. for ¢ € ® define the subset (5,9, k) of R as {x € R| ey(z) € Bs(k)}.

Further if ¢ is simply-laced, that is if there is only one root length, then we denote
es(S, k) = &/(S, k) by (S, k).

Next, we will define subgroups of G(®, R) and some other notions that we need later

on:

Definition 2.2.11. Let ® be an irreducible root system and let R be a commutative ring

with 1 in the following.

1. The elementary subgroup E(®, R) (or E(R) if ® is clear from the context) is defined
as the subgroup of G(®, R) generated by the elements e4(x) for ¢ € ® and z € R.

2. The subgroup U™ (®, R), called the subgroup of upper unipotent elements of G(®, R),
is the subgroup of G(®, R) generated by the root elements e,4(z) for z € Rand ¢ € ®

a positive root. Similarly, one can define U~ (®, R), the subgroup of lower unipotent
elements of G(®, R).

3. The upper Borel subgroup BY(®,R) = BT(R) = B(R) of G(®, R) is the subgroup
of G(®, R) generated by U™ (®, R) and all elements hy(t) for ¢ € ® and ¢ € R*. The
lower Borel subgroup B~ (®,R) = B~ (R) of G(®, R) is the subgroup of G(®, R)
generated by U~ (®, R) and all elements h,(t) for ¢ € ® and t € R*.

4. For each pair (J, L), where J is an ideal in R and L an additive subgroup of J, we
define the subgroup E(J, L) of G(®, R) as the group generated by all elements of
the form ¢, (x) for a € ® short, x € J and €3(y) for B € ® long, y € L.

5. For each such pair (J, L), we define the subgroup E(J, L) as the normal closure of
E(J,L) in E(R).

6. For each such pair (J, L), we define the subgroup E*(J, L) as follows:
E*(J,1) = {A € G(R, ®)|(A, E(R)) C B(J,L)}.
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7. For a proper ideal J in R the map 7; : G(®, R) — G(®, R/J) is the group homo-
morphism induced by the quotient map R — R/J.

Remark 2.2.12. If there is a natural number N := N(®, R) € N and roots ¢1,...,¢y € @
such that for all A € E(®, R), there are ay,...,ay € R (depending on A) such that
A= Hf\il £4,(a;), then we call the group E(®, R) boundedly generated by root elements.

Another technical result that we use quite often in later chapters is:

Proposition 2.2.13. [/1], Chapter 3, p. 21, Lemma 16,17; Chapter 8, p. 68, Lemma 49]
Let ® be an irreducible root system and let S, T be two sets of roots in ® such that the

following conditions hold:
1. Vo,beT: (a+ped) = (a+peT),
2. VaeVSpeT : (a+pe€®)=(a+5€S9),
3. VYaeT:—a¢T

Further, let R be a commutative ring with 1. Then
1. [lyer€s(R) is a subgroup of G(®, R).

2. [1yes€o(R) is a subgroup of G(®, R) normalized by [[,cres(R) and {hy(t)|o €
Ot € R*}.

3. every element A of [[,cr€4(R) can be written uniquely as [ cpep(z4) for x4 € R.

4. if R is additionally a principal ideal domain and K its fraction field, then H¢6T g4(R) =
G(®, R) N (Tger o(K))-

Remark 2.2.14. 1. A subset T of a root system ® with
Va,€T:(a+pPe®)=(a+p€T)
is called closed and a subset S of a closed set 1" with
VaeSpeT: (a+pe®)=(a+5e9)

is called an ideal in T.

2. If the indexing set I of a product [[..;u; is ordered in some manner it is always
understood that elements u; appear further to the left in the product J[,., u; than

elements u;, if 7 is bigger with respect to the ordering of I than j.
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2.3 Central elements of Chevalley groups and level ide-

als

Let G be a complex, simply-connected, simple Lie-group with root system ® which is not
Cy or Gy and Il = {ay, ..., a,} be a system of positive, simple roots and {H,,, ..., Hy, }
the associated elements of the Chevalley basis of g contained in §. For each linear function
A bh — C with (A\,a;) € Zso for all i« = 1,...,u there is a unique representation
pr : G — V, with highest weight A by [41, Chapter 2, p. 14, Theorem 2|. The so-
called fundamental weights Ai,..., A, are defined by (\;,a;) = 6;; for 1 < i,j < w.
These consequently define fundamental representations p; : G — GL(V,,) =: GL(V;) for
1 < i < u. Then define V := Vi & --- @ V,. The induced direct sum representation
p: G — GL(V) is faithful. The faithfulness of this p can be obtained by noting that
G(®,C) = G and using properties of maps between different Chevalley groups as described
in [41, Chapter 3, p. 29].

As mentioned in the first section, the Chevalley group G(®, R) does not depend on the
chosen faithful representation up to isomorphism. In case of ® £ C5 or GGy, the Chevalley
group arising from the representation p, is what we refer to as the split Chevalley group
G(®, R) in general. Setting further n; := dim¢(V;) for 1 < i < u, note that G(®, R) is a
subgroup of GL,, (R) x --- X GL,,,(R) C GLy, tny+-4n, (R) such that there is a collection
of polynomials P C Z[y;;] with

G(®, R) = {A € GLn, s 4-tn, (R)| P(A) = 0}.

One could also use representations of the form of p for ® = C5 and G4, but due to the
representations used in the formulations of certain theorems in Chapter [3| we will use a
different representation in those cases. Furthermore, we use the standard presentation as
matrix groups for G(C,, R) = Sp,,,(R) and G(A,, R) = SL,(R) quite often, but mostly
in Chapter 4, Chapter 5| and Chapter

Also there is the following description of central elements in G(®, R) with respect to

the representation p:

Lemma 2.3.1. Let R be a reduced, commutative ring with 1 and ® an irreducible root sys-
tem with ® # Cy or Gy. Further, let A € G(®, R) commute with the elements of E(®, R).
Then there are ty,...,t, € R* such that A = (t11,,) & - & (tuln,) € GLn, tngtoin, (R).

Furthermore, elements of this form are central in G(®, R).

Proof. We split the proof of the first claim of the lemma into three parts. First, we are
going to show the statement for fields, then for integral domains and finally for general
reduced rings. So let K be a field and A = (a) € G(®, K) be given. For fields, one has
G(®,K) = E(®, K) by [3, Corollary 2.4] and hence A is central in G(®, K'). Then by [41],
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Chapter 3, p. 29, Lemma 28] there are t1,...,t, € K — {0} such that A = [[}_, ha,(t:)
with {aq,...,a,} = II the system of simple, positive roots in ® chosen. Further [41]

Chapter 3, p. 29, Lemma 28| implies

1=[]ti for all ¢ € @. (2.1)

i=1
Furthermore, due to the construction of G(®, K), we know that G(®, K) is a subgroup
of GL,,(K) x -+ x GL,,(K) and according to the remark after [41, Chapter 3, p. 29,
Corollary 4] for 1 < j < u, the element A acts on the \;-weight component of K™ C

Kmtnettmu Ty multiplication with

ﬁtfj’“” = ﬁt‘sf =t (2.2)
=1 =1

This follows from the fact that A; is defined as the fundamental weight corresponding to
aj, that is (\j, ;) = 6;; holds for all 1 < 4,j < u. Each other weight of the action of
G(®, K) on K™ has the form \; — > ¢, where the ¢ are positive roots in ®. Then (2.1)
and imply that A acts on K™ by multiplication with ¢;1,,,. This holds for all j and
so yields the claim for fields.

For integral domains R, we distinguish two cases:
Case 1. R is finite.

Finite integral domains are fields and hence we are done.
Case 2. R is infinite.

Let a € ® be given and observe that for K the algebraic closure of the field of fractions

of R, we have the map
o Gu(K)=K = G(®,K),\— (A,ea(N)).

This is a morphism of algebraic varieties and note that as A commutes with elements in
£a(R) by assumption, ¢,|g is equal to the identity. But R is Zariski-dense in G,(K). So
®o|r being the identity implies that ¢, is constant. Hence A commutes with the entire
subgroup ¢,(K) in G(®, K). However G(®, K) is generated by the elements {e,(A\)|\ €
K,a € ®}. Hence A is central in G(®, K) and hence it has the form A = (t,1,,,) & --- &
(tul,,) for ti,...,t, € K —{0}. However, the element A is contained in the subgroup
G(®,R) of G(®, K) and thus t,...,t, € R holds. But A~ = (t]',,) ® - & (t;'1,,,)
is also an element of G(®, R) and thus t;*,...,t- ! are also elements of R and hence the

ty,...,t, are units in R.
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Lastly, let R be a reduced ring. Further let P be a prime ideal in R. So mp(A) €
G(®, R/P) centralizes all elements of E(®, R/P) and R/P is an integral domain. Thus

we obtain

A= (a11dn,) & ® (any oty 1 +1,m 440y 1 +11n, ) mod P

for all prime ideals P. This implies

A= (a1dn,) & ® (Any oty 1410144001 +11n, ) Mmod ﬂ P =+(0).

P prime in R

However R is reduced and so /(0) = (0) holds. Thus

A=(anl,)® @ (am+~~-+nu71+1,m+~--+nu71+1fnu)

holds and as in the the integral domain case, one obtains that a;i,...,an,+...4pn, ,+1 are
units in R. This finishes the proof of the first claim.

For the second claim, note that elements of G(®, R) are block matrices in
QLo (R) X - x QLo (R) C GLp s (R)

and so matrices of the form A = (a111,,) @ -+ ® (gt tnu 1 +1m1+ 41y 14140, ) ar€ ObVi-
ously centralizing G(®, R). O

Presumably this statement holds for general rings R, but we were not able to find a
reference. Next, we give the definitions of G(Cs, R) = Sp,(R) and G5(R). Both are still
instances of our general definition of G(®, R) in Section but we will not describe the

representations and choices involved explicitly for Gj.

Definition 2.3.2. Let R be a commutative ring with 1 and let
Spy(R) := {A € R™*ATJA =T}

be given with

0O 10
0 01
J =
-1 0 00
0 -1 0 0

The root system C, has four different positive roots namely, Cy = {«, 8, a + 3,2a + (5}
with « short and f long and both simple. The corresponding root elements in Sp,(R)

have (subject to the choice of maximal torus as diagonal matrices in Sp,(R)) the following
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form for t € R:

€a(t) = Iy + t(e12 — €as), €arp(t) = Lo + t(e1s + €23)
eg(t) = Iy + teay, e20+5(t) = Iy + tegs

and e4(t) = (e_4(t))T for negative roots ¢ € Cs.

We could specify an explicit matrix description for G5 with explicit root elements
as well, but this would be rather lengthy and instead we refer to the description in the
appendix of [15]. This appendix gives G5 as a subgroup-scheme of GLg. We will not
specify which elements of G5 C GLg correspond to root elements in particular, but note
the positive roots in the root system Go. They are G5 = {a, 8, a+8, 2a+03, 3a+ 03, 3a+25}
with a short and 8 long and both simple. Further note that the root subsystem generated
by £ and 3a + [ is isomorphic to the root system A,.

Next, we will define various variants of level ideals:

Definition 2.3.3. Let R be a commutative ring with 1, ® an irreducible root system and
let A € G(P, R) be given. The level ideal I(A) is defined

1. in case ® # C5 or Gy as the ideal in R generated by the elements a; ; and a;; — a;
forall 1 < ¢ # 5 < ny+---+ n, such that there is a k € {1,...,u — 1} with
i+ +1<i#j<n+---+nggorl<iz#j<n.

2. in case & = Cy as [(A) 1= (a4, (a;; —aj;)|1 <i#j<4).
3. in case & = Gy as [(A) := (a4, (a;; —a;j;)|1 <i#j <8).

Furthermore, define the following ideals: If ® = (' define
(A2 := (a7, (aii — a;5)° 1 S i # 5 < 4)
and if ® = GG, define

(A)s = (a7, (@i — a;5)°[L < i # 5 <8).

INE
Remark 2.3.4.
1. In case ® = Cy or Gy, note I(A) C /I(A)2 or I(A) C \/I(A)s.

2. All of the ideals [(A),l(A)s and I(A)s are finitely generated and independently of
the irreducible ® in question any element A € G(®, R) maps to a central element
in G(®, R/I(A)), if [(A) # R. This is obvious in case of ® # C; or Gy and a

consequence of Lemma otherwise.
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Chapter 3

Strong boundedness of Chevalley

groups

In this chapter, we show how to obtain strong boundedness for split Chevalley groups
of higher ranks as a consequence of applying Godel’s Compactness Theorem to Sand-
wich Theorems describing normal subgroups of split Chevalley groups. Instead of proving
Theorem directly, we prove two other theorems for different root systems @, Theo-
rem and Theorem [3.2.5] that together are equivalent to Theorem [I.2.1 We handle
the three cases of ® being not C5 or G5 and ® being either of them separately, because
the lower rank examples are more complicated then the higher rank ones. This distinction
will persist throughout this thesis.

In the first section, we state and prove the strong boundedness Theorem for
higher rank Chevalley groups G(®, R) for ® not Cy and Gs. Further, we state the main
technical statement, Theorem [3.1.1] needed to prove Theorem[3.1.2] In the second section,
we state similar technical statements, Theorem and Theorem [3.2.2] for Sp,(R) and
Go(R) and explain how to use them to prove the strong boundedness Theorem [3.2.5]
for them. In the third section, we prove the main technical statement, Theorem [3.1.1]
for higher rank Chevalley groups for ® # C5 or G, using Godel’s compactness theorem
and in the fourth and fifth section respectively, we prove the main technical statements,

Theorem and Theorem [3.2.2] for Sp,(R) and G1(R).

The two main definitions used in this chapter are:

Definition 3.0.1. Let R be a commutative ring with 1, I an ideal in R, ® an irrducible
root system and S a subset of G(®, R). Then define the following two subsets of maximal
ideals in R :

1. V(I) := {m maximal ideal in R|] C m} and
2. TI(S) := {m maximal ideal of R| VA € S : m,,(A) central in G(®, R/m)}
We also note the following observation:
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Lemma 3.0.2. Let R be a commutative ring with 1, I, Is two ideals in R, ® an irreducible
root system in R and S,T two subsets of G(®, R). Then V (I, + I) = V(I;) NV (l3) and
I(SuT)=11(S)NIKT) holds.

The following lemma is elementary yet crucial for the later analysis:

Lemma 3.0.3. Let ® be an irreducible root system of rank at least 2 and R a commutative
ring with 1 and G := G(®, R) the corresponding split Chevalley group. Further let S be a
normally generating set of G. Then TI(S) = (0 holds.

Proof. Assume for contradiction that m is an element of II(S) and set K := R/m.
Then the set S maps to a set of central elements S in G(®, K). However, the set S
normally generates G(®, R) and so in particular, the subgroup E(®, R) is contained in
the normal subgroup of G(®, R) generated by S. But E(®, R) maps onto E(®, K) and
G(®, R/m) = E(®, R/m) holds according to [3, Corollary 2.4|. This implies in particular
that S normally generates G(®, K). So S is a subset of the center of G(®, K) and nor-
mally generates G(®, K). But this is only possible if G(®, K) is an abelian group to begin
with. But this is impossible, as can be seen in a number of different ways: The center of
G(P, K) is a subset of
H = (hs(t)|t € K,¢ € D).

according to [41, Chapter 3, p. 29, Lemma 28(d)|, but on the other hand H NU(®, K) =
{1} holds by [41l Chapter 3, p. 24, Lemma 21]. So G(®, K) being abelian and hence
H = G(®,K) would imply U(®, K) = {1}. But according to [41, Chapter 3, p. 27,
Lemma 17| for ¢ € ® arbitrary, the subgroup e,(K) of U(®, K) = {1} is isomorphic to
(K,+). So the field K is trivial, which implies R = m and contradicts the assumption

that m is a maximal ideal in R. OJ

3.1 Strong boundedness of higher rank Chevalley groups

The main technical theorem used in this section is the following:

Theorem 3.1.1. Let ® be an irreducible root system of rank at least 2, which is not
Cy or Gy and let R be a commutative ring with 1. Then there are constants L(®) € N
(depending only on ®) such that for A € G(®,R) it holds that, there is an ideal 1(A)
contained in e5(A, L(®)) and with the property V(I(A)) C II({A}).

The main theorem in this section is the following version of Theorem [I.2.1}

Theorem 3.1.2. Let O be an irreducible root system that is not Cy, Go or Ay and let R be
a commutative ring with 1 such that G(®, R) is boundedly generated by root elements with
IG(®, R)|ler, < Q(®, R). Further let L(®) € Ny be the constant given by Theorem|[3.1.1]
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1. If ® is simply-laced, then Ap(G(P, R)) < Q(P, R)L(P)k holds for all k € N.
2. If ® is not simply-laced, then Ay(G(®, R)) < 3Q(®, R)L(P)k holds for all k € N.
We show next:

Proposition 3.1.3. Let ® be any irreducible root system that is not G5, Cy or Ay, R a
commutative ring with 1 and let S be a finite subset of G := G(®, R) with TI(S) = 0 and
let L(®) be as in Theorem[3.1.1]

1. If @ is simply-laced, then ||e4(a)|ls < |S|L(P) holds for all a € R and for ¢ any root
n O.

2. If @ is not simply-laced, then ||e4(a)|ls < 3|S|L(P) holds for all a € R and for ¢

any root in .

Proof. Let S = {Ay,...,A,} be given and for [ = 1,...,n, let I(A;) be the ideal from
Theorem [3.1.1] Next, consider the ideal I := I(Ay)+---+1(A,). As I(A;) C e5(A, L(D))
holds for all [, it is immediately clear that ||es(a)|ls < [S|L(®P) holds for all a € I and
¢ € ® short. But if [ were not R, then there would be a maximal ideal m containing [.
So according to Lemma the ideal m would be contained in

V() =V({I(A))N---NV(I(A)) CI({Ai}) N--- NII({AL}) = II(S) = 0.
Hence I = R holds.

This proves the claim of the proposition for the simply-laced case and shows in the
not simply-laced case that
leg(2)lls < L(P)[S]

holds for any x € R and ¢ € ® short. If there are long and short roots in ®, then each long
root is conjugate to a positive, simple long root ¢ in ® and there is a short, positive, simple
root v such that the set {1, ¢} spans a root subsystem of ® isomorphic to Cy. Further
according to the short root case, we know ||y (a)||s < |S|L(®) for all a € R already. But
1 + ¢ is a short root as well and so we obtain |le,(1)]]s, [lep+s(a)|ls < |S|L(P) for all
a € R. Hence as

(ep(1),e4(a)) = eyto(Fa)eapis(Ea),

holds, we obtain ||egyt4(a)||s < 3|S|L(P) for all a € R. The root 2¢ + ¢ is long however

and so we obtain the claim for ® not simply-laced. O

Having this proposition, we obtain Theorem [3.1.2}
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Proof. Let S = {A;,..., A,} be anormal generating set of G(®, R). Then II(.S) = () holds
according to Lemma [3.0.3] Hence according to Proposition [3.1.3] one has

lleg(a)|ls < |S|L(P) if  is simply-laced and
lleg(a)|ls < 3|S|L(P) if @ is not simply-laced

for all @ € R and all ¢ € ®. But according to assumption G(®, R) is boundedly generated

by root elements with
|G(®, R)|leL, < Q(P, R).

This implies

1G(®, R)l[s < [[ELglls - [|G(®, R)l[e, < |SIL(®) - Q(P, R)
if @ is simply laced and

1G(®, R)|[s < |[ELglls - [|G(®, R)l[eL, < 3|S[L(®) - Q(P, R)

if not. This finishes the proof. O

Chapter [4] is mainly concerned with determining possible values of L(®) for & = C,,
for n > 3 and ® = Eg and Chapter 5] and Chapter [6] are concerned among other things

with determining possible values for Q(®, R) in case of specific rings.

3.2 Strong boundedness for Sp, and G5

The two main tools in this section are the following two technical theorems:

Theorem 3.2.1. Let R be a commutative ring with 1 and let A € Sp,(R) be given. Then
there is a constant L(Cy) (not depending on A or R) such that, there is an ideal I(A)
(depending on A) with V(I(A)) C TI({A}) and 21(A) C (A, ¢, L(Cy)) for all ¢ € Cs.
More precisely, 21(A)s C (A, ¢, L(Cy)) holds for all ¢ € Cs.

and

Theorem 3.2.2. Let R be a commutative ring with 1 and let A € G5(R) be given.
Then there is a constant L(Gs) (not depending on A or R) such that, there is an ideal
I(A) (depending on A) with V(I(A)) C TI({A}) and I(A) C &/(A, L(G3)). More precisely
[(A)s C (A, L(G3)) holds.

We further need the following:
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Lemma 3.2.3. Let R be a commutative ring with 1,(R : 2R) < oo and ® = Cy or G
such that G := G(®, R) is boundedly generated by root elements. Further define

Qc, = {Aey(22)A | 2 € R, ¢ € Cy, A € Spy(R)} and
Qa, = {Ae4(22)A7"| z € R, ¢ € Gy short, A € Ga2(R)}
U{Aeg(z)A 2 € R, ¢ € Gy long, A € Ga(R)}

and Ng = (Qa) and let || - ||y : No — Ny be the word norm on Ng defined by the set
Qo.

1. Then the group G/Ng is finite.

2. Then there is a K(®, R) € N such that |Ns|g, < K(®, R).

Proof. First, we show that Ng has finite index in GG to show the first claim of the lemma.
The ideal 2R has finite index in R so let X C R be a finite set of representatives of 2R in
R. The group G is boundedly generated by root elements and so there is an n := n(R)

and roots ay, ..., qa, € ® such that for all A € G there are ry,...,r, with

A= Héai(m‘ (3.1)

Next, choose for each ¢ an element a; € R and an x; € X such that r; = 2a; + z;. Note:

n

A= Hgai (n> = €q, (2@1) H €Qi<20’i)(aal(xl).“6ai1($i1))] . [H €y (xl)
=1

i=1 1=2

(3.2)

Yet the first two factors at the right are elements of Ng and there are only finitely many
possibilities for the third factor, so the first claim of the lemma follows. For the second
claim, observe that (3.2)) implies for A € Ng:

1Allos <D llea(2a)lgo + I T as(@i)llae < n+ 1 ] e (@) o
i=1 i=1 i=1

But again, there are only finitely many possibilities for || [T}, €a,(;)|| @, and this proves

the second claim. ]

Remark 3.2.4. As the group G/Ng = G(®, R)/Ny is finite, it is uniformly bounded, that
is the constant A, (G(®, R)/Ng) is finite as well.

In this section, we will prove strong boundedness for Sp, and Gs:

Theorem 3.2.5. Let R be a commutative ring with 1, (R : 2R) < 0o and ® = Cy or G
such that G(®, R) is boundedly generated by root elements. Additionally, define Ng, Qo
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and K (®, R) as in Lemmal[3.2.5 and let L(Cs) be the constant given in Theorem and
L(G>) be the constant given in Theorem [3.2.3. Further, define the constants j(Cs) := 1
and j(Gy) := 6. Then

Ap(G(®, R)) < j(®)L(P)K (P, R)k + A (G(®, R)/No)

holds for all k € N.

3.2.1 The Sp,-case

First, we obtain the version of Proposition for Sp,(R):

Proposition 3.2.6. Let R be a commutative ring with 1 and let S C Sp,(R) be a finite
set with T1(S) = 0. Let L(C5) be as given in Theorem[3.2.1, Then we have for all a € R
and for all ¢ € Cy that ||e4(2a)||s < |S|L(Cy) holds.

Proof. Let S ={A;,..., Ay} be given and let 21(A;) be the ideal and L(C3) the constant
from Theorem for all I = 1,... k. Consider the ideal I := I(Ay) + --- 4+ I(Ag).
As 21(A;) C (A, ¢, L(Cy)) holds for all [ and all ¢ € Cy, it is immediately clear that
les(2a)||s < |S|L(Cs) holds for all a € I. Thus it suffices to show that I = R, which
follows from II(S) = 0 in the same manner as in the proof of Proposition [3.1.3] O

We can prove Theorem for Sp,(R) now:

Proof. Let S be a finite normal generating set of Sp,(R). Set G := Sp,(R) and recall
Qc, = {Ae¢(2m)A_1| r € R,¢p€Cy AcSpyR)}.
and Ng, := (Qc,). Next, set
E(G/N¢,) :={T C G/N¢,| T normally generates G/N¢, }

Let 7 : G — G/Ng, be the quotient map. The quotient G/N¢, is finite according to
Lemma [3.2.3(1) and so we can define M(R,Cs) := M := A (G/N¢,) € Ny. So for all
T C G finite with 7(T") € E(G/N¢,):

ngGzltl,,tMETUT71U{1}E|A1,,AMEG

rlg) = n([ ] AtiA).
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Hence g([T, Ait; A7)~ € Ng, holds and so

M
lglls < I [T AtiAT s + | Neolls < M max{|lt]|s| t € T} + | Neys-

i=1

This implies
15p4(R)]|s < M max{||t]|s| ¢ € T} + [ Nes s

for all T' C G finite with 7(T) € E(G/Ng,).
Next, note that S itself is such a subset by assumption and for A € S, one clearly has
|Al|s <1 and thus

1Spa(R)lls < M +[[Neylls = M(Ca, R) + || Ney|[s- (3-3)

But according to Lemma one has II(S) = 0. Thus according to Proposition [3.2.6]
for all ¢ € Qc,, one has ||q||s < L(C5)|S| for the L(Cy) from Theorem [3.2.1] Further, by
Lemma [3.2.3(2), there is a K(Cy, R) € N such that [|Ne,[loq, < K(Co, R). This implies
|Neylls < K(Cs, R)L(C5)|S| and this finishes the proof together with (3.3)). O

3.2.2 The Gy-case

Remember that the positive roots of G5 are «, 5, + 5,2a + 3, 3a + 5,3a + 25 with «
short and simple and 5 long and simple. Further, recall that the root subsystem spanned
by 5 and 3« + § is isomorphic to As. First, we give the version of Proposition for
G2 .

Proposition 3.2.7. Let R be a commutative ring with 1 and let S be a finite subset of
Go(R) with II(S) = 0 and let L(G>) be chosen as in Theorem[3.2.9, Then for alla € R :

1. |leg(a)lls < L(G2)|S| holds for all ¢ € Gy long.
2. |leg(2a)|ls < 6L(G2)|S| holds for all ¢ € Gy short.

Proof. Note that according to Theorem one has I C (S, L(G2)|S|) for the ideal
I:= 73" ,cgI(A). As in the proof of Proposition [3.1.3) II(S) = () implies I = R. This
yields the claim of the proposition for long roots. To get the claim for short roots, observe
first that eg(a) € Bg(L(G2)) holds for all a € R, because (3 is long. This implies

Bs(2L(G2)) 5 (5(a), a(1)) = €arp(£a)e20+5(£0)e30+5(£0)E50420(£a”).  (3.4)

However, €341 5(£a)e30-125(+a?) commutes with £,(1) and hence we obtain from equation
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(3.4) that:

BS(AL(G1)) 3 (Eas ()45 (£0)25015 (£0) 250525 (£0%), 20(1))

(

= (ca+s(Fa)e2a+p(£a), ca(1))

~ (20+8(F0a), €a(1)) - (€a(1), €arp(£a))

= €3045(£30) - €204 5(£20)€304 5(£30)E30425(£30°)
= 201+(120)e3015(£3a & 3a)e30125(£3a?).

Yet €341 5(+3a &+ 3a) and €3,425(+3a?) are both elements of Bs(L(G3)) by assumption
and hence
E2a+8(E2a) € Bs(6L(G2))

holds. But 2a + [ is a short root and hence as a € R is arbitrary, the claim for short

roots follows as well. O

Using this one can now prove Theorem for Go(R), but the proof is essentially
the same as the one for Sp,(R), so we are going to omit it.

Determining the value of A, (G/Ng) for & = C5 or Gy is very similar to determining
the so-called covering number of the group G/Ng. This is a classical problem in the
theory of finite groups and we talk about this to some extent in Chapter [6] Determining
K(®, R) on the other hand is more difficult and we show how to do it for a special case
of R in Chapter [6] as well. It is a problem related to the congruence subgroup property.

Lastly note the following corollary of the previous proofs:

Corollary 3.2.8. Let R be a commutative ring with 1, ® irreducible and of rank at least
2 and assume G(®, R) = E(®, R). Then a subset S of G normally generates G precisely
if

1. one has TI(S) = 0 in case & # Cy, Gy

2. one has TI(S) = 0 and S maps to a normally generating set of G/Ng for Ng as in
Lemma in case = Cy or G.

Proof. First, if S normally generates G(®, R), then Lemma implies I1(S) = 0, so
this condition is always necessary independent of ®. However, if ® = C5 or G5, then it is
obvious that if S normally generates G(®, R), it must also normally generate its quotient
G(®, R)/Ng. This proves that the conditions named in the corollary are necessary.

On the other hand, assume first that ® # Cy or Gy and that II(S) = () holds. As
G(®, R) = E(®, R) holds by assumption, it suffices to prove that G(®, R) contains all root
elements. This however is a direct consequence of Proposition In case ® = C5 or
G, the crucial point is that II(S) = 0 implies No C ((S)) as implied by Proposition [3.2.6]
and Proposition [3.2.7p Hence it is obvious, that if S maps to a normally generating set
of G/Ng for G = G2(R) or Sps(R), then S must normally generate G. O
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3.3 Boundedness of root elements in higher rank Chevalley-
groups
In this section, we prove Theorem The main tool is the following theorem by Abe:

Theorem 3.3.1. [2, Theorem 1,2,3] Let ® be an irreducible root system that is not Ay, Cy
or Gy and let R be a commulative ring with 1. Then for each subgroup H C G(P,R)

normalized by the group E(®, R), there is an ideal J C R and an additive subgroup L of
J such that E(J,L) C H C E*(J,L).

Remark 3.3.2.

1. The paper [43] by Vaserstein deals with similar statements in the simply laced case
and with the multiple laced case under some assumptions. The papers Abe, Suzuki
[3] and Abe [I] deal with local rings.

2. The proof of Theorem is quite complicated and requires a careful reduction to
the case of R being local. However, under the assumption that R satisfies a stable
range condition (see Chapter , results of the form of Theorem are much
more readily provable. For example, Bass earlier result [5, Theorem 4.2(e)| shows a
similar description of normal subgroups of SL, (R) by using much more elementary

methods in case R satisfies a stable range condition.

3. Theorem is enough to prove strong boundedness of G(®, R) for commutative
rings with 1 and ® # Ay, Cy, G5 with G(®, R) boundedly generated by root elements.
However, this would not yield any linear bounds on A, and is very similar to our

argument, so we do not give more details.
We further need the following lemma about root elements:

Lemma 3.3.3. Let ® an irreducible root system that is not Ay, Cy or Go, R a commutative
ring with 1 and A € G(®, R) be given and assume that A\ € €5(A, N) for some N € N.
Then

AR C £4(A,8N)

holds.

Proof. First note that A\ € £,(A, N) is equivalent to e4(\) € B4(N) for any short root
¢ € ®. We distinguish two cases:

1. ® # B,,. Note that ¢ is a short root in ® and that all of these root systems contain a
root subsystem isomorphic to Ay consisting of short roots. Hence after conjugating

with a suitable Weyl group element, we can assume that ® = A, with simple positive
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roots «, 5 and ¢ = o+ . But « is also short and this implies ,(\) € Ba(NV). For

x € R arbitrary, we obtain further
eo(ExX) = (ea(E£N), e5(£x)) € Ba(2N).

This yields the claim for & # B,

2. ® = B, for n > 3. After conjugation with Weyl group elements, we assume that
n = 3 and so there are positive, simple roots «, 3, ¢ with the Dynkin-diagram

corresponding to the simple roots «a, 5 and ¢ looking as follows:

Then
Ba(2N) 3 (e4(N), e5(2)) = epro(EaN)eprs(E£2N?) (3.5)

holds for x € R arbitrary. The root 3+ ¢ is short however and so we have 5, ,(\) €
Ba(N) as well. Thus for = 1 we obtain £4424(A\?) € Ba(3N) from (3.5). The
root 3+ 2¢ is long and hence e5,24(A\?) is (up to sign) conjugate to £5(A\?) and so
e5(A?) € Ba(3N). Yet «, 8 are simple roots in a root subsystem of Bj isomorphic
to A and hence we obtain from the first item that es(xA?) € B4(6N) holds for
all x € R. Summarizing this with equation (3.5 we get e5.4(x)\) € Ba(8N) for all

x € R. Hence after conjugation we are done with the case ® = B,, as well.
O

Remark 3.3.4. This Lemma is a more quantitative version of Vasersteins [43, Theo-
rem 4(a)].

We can prove Theorem Now:

Proof. First, let ny,...,n, be given as the dimensions of the representations involved in
defining p as in Section and set n :=ny + -+ -+ n,. Also choose the polynomials P in
Zly;;] characterizing elements of G(®,-) that is

G(®, R) = {X € R™™|P(X) = 0}

holds for any commutative ring R with 1. Further, let 1 < £k, < n be given with not both
k and [ equal to n and let ¢ € ® be a short root.

Next, let a language £ with the relation symbols, constants and function symbols

(Ra 07 17 +7 X, (ai,j)lgi,jgna (6(]{3, l7 U))veN; '_1)
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be given. Here 0,1 are constant symbols, (a; j)1<i j<n is @ matrix of constant symbols and
(e(k,l,v))pen is an infinite sequence of constant symbols. Further -—1 : R™*" — R™*" g
a function symbol and we often use the notation X! := -7!(X) for X an n x n-matrix of
variable and constant symbols. Also the symbol A denotes the n x n-matrix of constants
(a; ;) and X commonly refers to n x n-matrices of variable symbols. Next, we define a first
order theory T in the language L. This first order-theory 7, contains formulas regarding
n X n-matrices with entries being variables or constant symbols in £, but these formu-
las can always be rephrased into a conjunction of formulas about variables or constants
in £. Further, the formulas in 7 also involve multiplication and conjugation of n x n-
matrices of constants and variables in the language £. However, matrix multiplication
can be phrased in terms of £ as it is defined entry-wise: For example the (i, 7)-entry of
Z = (zj) == X - Y is defined as z;; :== > wuy; for 1 < 4,5 < nand X = (x;;) and
Y = (yi)-

The theory Ty, is defined to contain the following sentences:

1. Sentences forcing the universe R := R™M of each model M of T;; to be a commutative
ring with respect to the functions +, x* and with 0, 1" being 0 and 1 in the

ring R.

2. For all v € N: If & # [ the sentence e(k,l,v) = aj, should be included in 7. If on
the other hand k = [, then choose the smallest w € {1,...,u} with k <nj+---+n,

and include the sentence e(k,l,v) = (akr — Qnytoiny )" -
3. The sentence P(A) = 0.

4. The sentence VX : (P(X) =0) = (X- X' =1,), where I, denotes the unit matrix

in R™™ with entries the constant symbols 0,1 as appropriate.

5. A family of sentences (6, ),cn as follows:

0,0 N\ VX1 X Vel el e {0,1,-1} -

1<v<lr

KP (Xf“)) = =P(X") = o) o (5¢(e(k, L)) # (A7) Aew)xwﬂ

Here A' := A, A7! .= A7! and A° := I,,. Also remember as mentioned in Sec-
tion that e4(7) for T a variable, is a n X n-matrix, whose entries are polynomials
in Z[T], so in particular the last collection of sentences (6,) are in fact first-order

sentences in the language L.

We first show that the theory 7y is inconsistent. To this end, let M be a model for
the sentences in (1) through (4) and let R := R™ be the universe of M. The sentences
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in (1) enforce that R is a commutative ring with 1 = 1™ and 0 = 0™ and (3) enforces
that the matrix A := (a}}) € R™" is an element of the Chevalley group G(®, R). Let H
be the subgroup of G(®, R) normally generated by A. According to Theorem there
is a pair (J, L) such that

E(J,L) C HC E*(J,L).

As L C J holds, A € E*(J, L) implies that 7w;(A) centralizes F(R/J) and consequently
that 7 7(A) centralizes E(R/v/J). The ring R/v/J is reduced and so 7 5(A) has the form
described in Lemma This implies that I[(A) C v/J. Hence as E(J, L) C H, there
is a constant 7 € N such that e4(e(k,l,v)™) € Ba(r’) holds for some v < /. But this

contradicts the statement 6.

So summarizing: a model of the sentences in (1) through (4) cannot be a model of all
of the sentences 6,. Hence there is in fact no model of all of the above sentences and hence
Tr is inconsistent. Godel’s Compactness Theorem [37, Theorem 3.2| implies then, that a
certain finite subset 7,9 C T, is already inconsistent. But then only a finite collection of
the 6, is contained in T,9. So let Ly (®) € N be the largest » € N with 6, € T9. Observe
further, that for all » € N, we have {(1) — (4),0,.1} F 0,. Hence the subset 7,; C Tx
that contains all sentences in (1) through (4) and the single sentence 0, (¢, must be

inconsistent as well.

Let R be an arbitrary commutative ring with 1 and let A € G(®, R) be given. This
gives us a model M of the sentences in (1) through (4) and hence as 7;} is inconsistent, this
model must violate the statement 9%@). Thus there are elements gy, ..., g1,,(0) € G(®, R)

and ey, ..., er,, @) € {0,1,—1} as well as a natural number v < Ly (®) such that
€¢(6(/€, l, U)M) = (Ae1)g1 . (AeLkz@))ngz(‘I’)‘

Hence we obtain that either a power of ay; (in case k # [) or a power of Gk —any 410 my+ 410
(in case k = 1) is an element of e(A, ¢, Ly (®)). So setting

L(®) := > 8Lu(®),
1<k,I<n not both k,i=n
we get together with Lemma an ideal I(A) in R such that I(A) C e(A, ¢, L(D))
and [(A) C \/I(A) holds. But if m is a maximal ideal containing /(A), then it contains
[(A) and so 7,,(A) is central in G(®, R/m) according to Lemma Hence V(I(A)) C
II({A}) holds. So the ideal I(A) has the desired properties for the single root ¢. But
e(A, ¢, L(P)) = e5(A, L(®P)) holds and so the theorem is proven. O
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3.4 Boundedness of root elements in Sp,(R)

In this section, we prove Theorem [3.2.1] Recall that the positive roots in Cs are o, 3, a+f3
and 2« + [ with « short, positive and simple and 3 long, positive and simple. The main
ingredient is the following observation due to Costa and Keller instead of Theorem [3.3.1}

Theorem 3.4.1. [1], Theorem 2.6, 4.2, 5.1, 5.2] Let R be a commutative ring with 1
and let A € Spy(R) be given. Then for all x € I(A) one has e2045(2x + 1?)eqsp5(2?) €
((A)) B(co,r) with ((A))B(c,,r) denoting the subgroup of Spy(R) generated by the E(Cy, R)-
conjugates of A.

Root elements in Sp, are more complicated than in higher rank groups:

Lemma 3.4.2. Let R be a commutative ring with 1 and S C Spy(R). Let A € R and
N € N be given. Then

1. €20482X + A?)eni5(A\?) € Bs(N) implies {e20+5(22X?)|x € R} C Bg(2N).
2. €20+5(A) € Bg(N) implies e4(\) € Bs(3N) for all ¢ short in Cs.

3. €a(z)\) € Bs(N) for all x € R implies es(x\?) € Bs(3N) for all ¢ € Cy long and
all v € R.

4. €20+8(N) € Bg(N) implies {€20+5(22\)|x € R} C Bs(6N).
5. €20482N + AN?)eqis(N?) € Bs(N) implies {4(222?)|x € R, ¢ € Cy} C Bg(6N).

All of the above implications stay true, if the balls Bs are replaced by a normal subgroup

of Spa(R).
Proof. For the first claim inspect the commutator
Eaa45(£200?) = (€0 (@), €2048(2A + A)zass(A?))

for © € R arbitrary. For the second claim, note that 2,4 5()\) is conjugate to e5(\) and
so e5(A\) € Bs(N). Note further

BA(2N) 3 (£5(N), 2al1)) = £ass(EN)e2ass(£N).

These two facts imply €,13(A\) € Bg(3N). The element €, 45()) is conjugate to e4(\) for
every short root ¢ € Cy. This proves the second claim of the lemma and the third claim

follows by considering for x € R the commutator

BA(2N) 5 (£4(1), €a(N)) = ass(EaN)esars(£X?).
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and noting e,45(£x\) € B4(N). For the fourth claim, note that we have by the second
claim, that €,(\) € Bs(3N). Next inspect for z € R the commutator:

Bs(6N) 3 (€a(A); €ats()) = €204 5(F27A).

This proves the fourth claim. The last claim follows from part (1) and (2). O
This enables us to prove Theorem [3.2.1}

Proof. The proof is very similar to the one of Theorem [3.1.1] First, let natural numbers
k,l be given with 1 < k,[ < 4. Also if £ = [, then we assume that £ = [ < 4. Further let
P C Zyij] be a collection of polynomials describing membership in Sp,. The language £
and the theory 7y is defined the same way as in the proof of Theorem [3.1.1] except for
four differences: First, we include a constant symbol e(k, ) instead of e(k, [, v). Secondly,

the sentence in (2) has the form

6(k’l):{a,d, if ko £ 1

Apk — Qg41k+1,  if nOt

Third, the sentence in item (3) describes that for each model M the matrix AM is an
element of Sp,(R™M). Fourth and most importantly, the sentences in (5) are a family of

sentences (0,).cn such that

0, VXq,..., X, Ve, ...e, €{0,1,—1} : (P(Xy)A--- AN P(X,)) —
(e20+5(2e(k, 1) + e(k, )*)earp(e(k, 1)?) # (A7)5 - (A7)))

Invoking Theorem instead of Theorem yields that a model of (1) through
(4) cannot be a model of all sentences in (5). Hence Ty, is inconsistent. Using Godel’s
compactness theorem, we obtain, as in the proof of Theorem [3.1.1} that there is an
Li1(Cy) € N such that the subset 7,5 C Ty, that contains all sentences in (1) through (4)

and the single sentence 0r, (c,) is already inconsistent.

Let R be an arbitrary commutative ring with 1 and let A € Sp,(R) be given. This gives
us a model M of the sentences in (1) through (4) and hence as T} is inconsistent this model
must violate the statement 92‘:’1(02). Thus there are elements g1, ..., gz, ,(cy) € Sp4(RR) and
€1,...er,,(cs) € 10,1, =1} such that (abusing the notation slightly)

o (26(k, 1) + ek, 1P)eas s (e(k, 1)2) = (A)91 - - (AThi(@ i)

Next, Lemma [3.4.2(5) implies 2(e(k,1)?) € (A, $,6L;,(Cs)) for all ¢ € Cy. If we sum
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over all admissible k, [, this implies for all ¢ € C5 that

2U(A)y =Y (2e(k, 1)) C (A, ¢, 6Lyu(Ca)).

kil

So define L(Cy) := 3, ;6L;1(C2) and then [(A); has the desired property of V(I(A)z) C
II({A}): If m is a maximal ideal containing [(A),, then it contains [(A) and so A maps
to a scalar matrix in Sp,(R/m), which is central in Sp,(R/m). O

3.5 Boundedness of root elements in Gy(R)

In this section, we prove Theorem This will be shown by using:

Theorem 3.5.1. [15, (3.6) Main Theorem] Let R be a commutative ring with 1 and let
H be an E(Ga, R)-normalized subgroup of Go(R). Then there is a pair of ideals J, J' in R
with
(*3z|lzeJ)ycJ CJ
such that
[E(R),E(J,J)] Cc HCG(J,J").
Remark 3.5.2. We are not defining G(J,J'), but note that H C G(J,J’) implies that
m;(H) = {1}.
This implies:
Corollary 3.5.3. Let R be a commutative ring with 1, A € Go(R) and H the smallest

subgroup of Go(R) normalized by E(Ga, R) and containing A. Then e34125(a%), €34425(3a)
are elements of H for all a € [(A).

Proof. This follows directly from Theorem Note first that the first ideal J from
Theorem must contain [(A), because A € H becomes scalar after reducing modulo
J. Hence for a € I(A), we get that 3a,a® are elements of the second ideal J' from Theo-
rem [3.5.1} Lastly, {eg(b)| b € J'} C H holds, because 3 is a root in the long Ay in G
and this finishes the proof. O

Next, note the following:

Proposition 3.5.4. Let R be a commutative ring with 1 and let S C Ga(R) be given.
Then

1. if for N € N, X € R one has €34+28(A\) € Bs(N), then

(a) {es(x\)|x € R} C Bg(2N) for ¢ long and
(b) {e4(2z\)|z € R} C Bs(8N) for ¢ short hold.
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2. if ea(\) € Bs(N), then {e3a425(xA?)|x € R} C Bg(4N) holds.
The implications are still true, if the balls Bg are replaced by a normal subgroup of Go(R).

Proof. Part (1a) can be obtained by arguing as in the proof of Lemma using the
root subsystem of G5 formed by long roots and isomorphic to Ay. For part (1b) inspect

the following commutator formula for all z € R :
(0N 20 (0N 5015 (0N 025 (£0°A2) = (25N, 2alx)) € Bs(2N)  (3.6)

Note that £3445(2°\), £30125(@*A?) both commute with ,(1). Hence we obtain from equa-

tion ({3.6)):

Bs(4N) 3 (cats(£2N)e2015(£2°N)e3015(£2°N)es0t25(£2°A?), £0(1))
= (Cars(£2N)E2015(£22N), €0 (1))
~ (E2arp(E2N), £a(1)) - (2a(1), Cars(ET)

= 23045(E372N) - €901 5(F27N) 3015 (3TN E30-125(£32°1?)

= 904 5(F27N) 304 s(E3TN £ 32°N) 301 25(£32°\?)

Yet €304 5(E£3xAE32%N), £30125(£32%A\?) € Bg(2N) holds by claim (1a) and hence €944 5(22)) €
Bg(8N) holds as well. This finishes the proof of the first claim of the lemma. For the

second claim inspect first the commutator
Bs(2N) 3 (g5(2),2a(N)) = €ars(F2N) 204 8(FTA)e3045(£2N)e30 125 (F27N?).

However, all of the factors besides €344 5(2A?) in this product commute with e5(1). Thus

taking the commutator with e3(1), we obtain the second claim after conjugation. ]
With this in hand, Theorem follows:

Proof. The proof is very similar to the proof of Theorem [3.2.1] As mentioned in Sec-
tion (G, is a subgroup-scheme of GLg. Let natural numbers k,! be given with
1 < k,l < 8and let P C Z[y;;] be a collection of polynomials describing membership
in G. Also if kK = [, we further assume that £k =1 < 8.

The language £ and the theory Ty is defined the same way as in the proof of The-
orem except for two differences: First, the sentence in item (3) describes that for
each model M the matrix AM is an element of G5(R™M) instead of Sp,(R™).

Second, the family of sentences (6, ),y in (5) has the form:

0, VXi,...,X,,Vey,...e, €{0,1,—1}:
(P(X1) A== AP(X,) = ((es(e(k,1)%) # (A)F - (A7)
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In particular, the sentence in (2) still has the form

if k#£1
6(7€, l) _ { Qs 1 #

Apk — Qg41k+1,  if not

One then obtains using Corollary [3.5.3] that a model of the sentences in (1) through
(4) cannot be a model of all sentences 6, in (5). Hence Ty, is inconsistent. As before, we
can by invoking Godel’s compactness Theorem find an Ly ;(G2) € N such that the subset
Tw € T that contains all sentences in (1) through (4) and the single sentence 61, (ay),

is already inconsistent.

Next, let R be an arbitrary commutative ring with 1 and let A € G2(R) be given.
This gives us a model M of the sentences in (1) through (4) of Tz and hence as T}
is inconsistent this model must violate the statement 92‘;‘}1@2). Thus there are elements
Gis- -5 9L(Go) € G2(R) and ey, ... er, (g, € {0,1,—1} such that (abusing the notation
slightly)

coell, 1) = (A - (ACHR1000) o

Proposition [3.5.4(1a) implies (e(k,1)*) C &,(A,2Ly;(G2)). Summing further over all ad-

missible k, [ implies

(A)s =Y (e(k,1)°) Ce(A)D 2L4(G)).

k.l

Define next L(Ga) := 2Ly (G2) and we are done, similar as in the proof of Theo-
rem [3.2.11 O
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Chapter 4

Quantitative bounds on root elements

for principal ideal domains

In Chapter [3] we give a model theoretic argument for the existence of L(®) as in Theo-
rem Theorem and Theorem In this chapter in contrast, we give explicit
values for L(®) for different ® in case the underlying ring R used to define G(®, R) is a

principal ideal domain.

In the first section, we give values for L(C,,) for n > 3 by way of matrix calculations
and generalizations of so-called Hessenberg-matrices. In the second section, we determine
L(C5). In the third section, we introduce a particular version of the Bruhat decomposition
for G(®, R) in case of R being a principal ideal domain and study some of the properties
of this decomposition and its connection to the combinatorics of the corresponding Weyl
group W (®). In the fourth and fifth section, we use this Bruhat decomposition to give a
value for L(Es) and L(G3) respectively, but again only in the case of R being a principal

ideal domain.

4.1 Explicit bounds for root elements of Sp,, (R)

For this section, we use a representation of the complex, simply-connected Lie group
Sps,(C) that gives the following, classical definition of G(C,, R) = Sp,,(R) instead of
the representation p introduced in Section However, remember that both of these
representations still define the same group G(C,, R).

Definition 4.1.1. Let R be a commutative ring with 1 and let

Spy, (R) i= {A € R¥|ATJA = J}
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be given with

On‘]ﬁ
J=|—onw-
~I,.| 0,

This implies the following:

Lemma 4.1.2. Let R be a commutative ring with 1 and let A € Spo,(R) be given with

Al\AQ
A= | ————
Ag\A4

for Ay, Ay, Az, Ay € R™*™. Then the equation

AT | -4AT
A= JAT ) = [ —————
~AT| AT

holds.

We use this identity frequently in the following matrix calculations usually without
reference. Every symplectic matrix can be writen as a 4 x 4-block matrix of n x n-
matrices and this decomposition shows up naturally in the calculation. Therefore we
will often signify this decomposition in blocks using vertical and horizontal lines in the
following matrices as done in the above lemma for example. These lines serve merely as
an optical help to read the calculations and have no mathematical meaning.

Let n > 2 be given. We can choose a system of positive simple roots {a1, ..., a, 1,8}

in C), such that the Dynkin-diagram of this system of positive simple roots has the fol-

C,: Qn—1 @: @

Then subject to the choice of the maximal torus in Sp,,(C) as diagonal matrices in

lowing form

Sps,(C), the root elements for simple roots in G(C,, R) = Sp,,,(R) can be chosen as:
€a; (1) = Lop + t(€n—in—it1 — €2n—it12n—i) for 1 <i <mn —1 and e3(t) = Iy, + te, 2, for all
teR.

More generally, the root elements e4(x) for short, positive roots in ¢ € C,, and z € R
are then either Iy, + t(e;; — entjnri) for 1 < i < j < n or Iy, + t(ejntj + €jnsi) for
1 < i < j <n. The root elements ¢, (x) for long, positive roots in ¢ € C), and ¢t € R are
then Iy, + ze; ,4; for 1 < i < n. Root elements for negative roots ¢ € C,, and = € R are
then e4(z) = e_4(z)7.

The goal of this section is to prove the following:
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Theorem 4.1.3. Let R be a principal ideal domain, n > 3 and let A € Sp,,,(R) be given.
Then there is an ideal I1(A) in R such that

1. V(I(A)) Cc II({A}) and

2. I(A) C e5(A,64(1 +5n)) hold.
Phrased differently, for R a principal ideal domain and n > 3, one can can pick L(C,,) in
Theorem as L(Cy) = 64(1 + 5n).
The first Hessenberg form

We start with a Lemma that gives us a Hessenberg form similar to the one used in [24]:

Lemma 4.1.4. Let R be a principal ideal domain, n > 3 and A € Spy,(R) be given.
Then there is an element B € Spy,(R) such that A’ := B~*AB has the following form

a1 12 G133 Aip—2 Q1p-1 d1p
/ / / / / /
Qo1 Q2o Qg3 Aop—2 QAgp-1 Q2g,
/ / / / /
azo Qg3 agpn—o Q3,1 A3, A
2
’ ’ . / / /
A= 0 0 ay g2 Qqpn-1 Oup
0 0 0 0 al al
n,n—1 n,n
/ /
with a}; = ay1 and ay; = ged(agy, asy, - .., an1) up to multiplication with a unit in R and

Ay AL AL € RV We call a matriz of the form of A" in Spa,(R) a matriz in first

Hessenberg form.

Proof. If a3y = 0, then define AB®) .= A. Otherwise choose t3 := ged(ag, as ). Observe
that x5 := —af—; and y3 := af—; are coprime elements of R and hence, we can find elements

us,v3 € R with uzys — x3v3 = 1. This implies that the matrix

1
us U3 0
T3 Y3 !
[nf?)
T3 =
1

—X
0, Y3 3

—V3 us

In—3
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is an element of Sp,,(R). The matrix A® := T3AT; " has the (1,1)-entry a;; and the

(3, 1)-entry

3
l’gag)

3 asi (3
)+ ysal) = ——al) 3
t3 t3

The entries of A® are denoted by a,(jl).

Next, if af{ = 0, then define A® := A®) Otherwise choose t; = gcd(ag,af{).

(3)

Ne)

a .
Observe that z, := —% and y, := % are coprime elements of R and hence, we can find

elements uy, vy € R with ugyy — xr4v4 = 1. This implies that the matrix

is an element of Sp,, (R). The matrix AY := TyA®T, " has the (1,1)-entry a

the (3, 1)-entry 0 and the (4, 1)-entry

()

(3)

) _ %1 (3

(3)
2,1

(3)

TaQg + Yalyq = — £, G2l + T a1 =
4 4

The entries of A® are denoted by agjl) .

1
us 0 vy
0 1 0 0y,
ry 0 ys
In-4
1
Yye 0 —x4
0, 0O 1 0
—va 0 wuy
Iy

B) _
1,1 = 1.1,

Carrying on this way, we find that the matrix A™ is conjugate to A in Sp,,(R) and

has the (1, 1)-entry a;; and agfl) =a

) _ )

the existence of a matrix D € SL,,_;(R) with

41 = °° nl =
0 11
21
as3;1
D
Qp,1

o1

0. Further, the construction implies



But this implies that agfl) is a multiple of ged(agy, . . ., an1). Further note D' € SL,,_;(R)

and hence

1 0O --- 0 11 CL171
0 Cbgfl) 21
0 - as
D! B
0 0 Cln71
implies that all of the elements of ag 1, . . ., a,,1 are multiples of agfl) and hence ged(ag 1, ..., an1)
is also a multiple of a(;fl). So, up to multiplication with a unit agfl) = ged(ag 1, -y an1).

Hence the first column of the matrix A™ has the form described in the Lemma.
The remaining columns of A™ can be brought to the desired form in a similar way, by

conjugating with a matrix of the form

I
D

Oy,

DfT

for D € SL,_»(R). Note, that under conjugation with such a matrix, the first column of
A™ stays fixed and hence this yields the lemma. O

Remark 4.1.5. 1. Upper Hessenberg matrices in R™ ™ are matrices A = (a;;) with
a;; = 0 for i > j+ 1. They are commonly used tools in numerical mathematics [20]
and define subvarieties of flag varieties which have been extensively studied [16] as

well.

2. The proof strategy is an adaption of [33, Theorem III.1] to the group Sp,,(R).
Lemma (and Lemma [4.1.10| describing the second Hessenberg form) are actu-
ally the only steps in the proof of Theorem requiring R to be a principal ideal

domain.

The strategy to prove Theorem is to calculate carefully chosen nested commuators
of matrices in first (and second) Hessenberg-form with increasingly less entries until one

arrives at root elements.

Lemma 4.1.6. Let R be a commutative ring with 1 and n > 3 and let A be a matrix
in first Hessenberg form in Spa,(R) and B := A™'. Then X := (A, Iy, + €1,11) has the
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following form:

T1,1 T1,2 Tin T1n+1 T1,n+2 0
X211 X292 Ton L2 n+1 X2 n+2
0 0 0 0 0 0
0 0 1 0 0 0
Tn+1,1 Tp41,2 Tn+1,n Tn4+1n+1 Tn+ln+2
Tan,1 Ton,2 Tonn Ton,n+1 Ton,n+2 0

with Tin+1 = all(bn+1,n+l - bn+1,1) —1 and Toant+1 = a21(bn+1,n+1 - bn+1,1)'

Proof. Now let Ay, A3, Ay € R™™ "™ be given such that A has the following form:

11 Q12 A13 A1p—2 QA1p—-1 QAip
Q21 Qg2 (23 A2 n—2 QA2pn—1 Q2n
0 a3z ass 3n-2 G3n-1 Gsn | o
2
A= 0 0 au A4n—2 Q4p—1 Q4n
0 0 0 0 pp—1 Qnp
Ag A4
Then for the matrices By := — Al By := — Al B, := AT € R™" one has:
By By
bn+1,n+1 bn+1,n+2 0 0 0 0
B =
b2n73,n+1 b2n73,n+2 b2n73,n+3 b2n73,2n72 0 0
B
b2n—2,n+1 b?n—27n+2 b2n—2,n+3 b2n—2,2n—2 b2n—2,2n—1
b2n—1,n—|—1 b2n—1,n+2 b2n—1,n+3 b2n—1,2n—2 b2n—1,2n—1 b2n—1,2n
b2n,n+1 b2n,n+2 an,n+3 b2n,2n72 b2n,2n71 b2n,2n
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Observe first:

-1
Ael,n+1A = A€1,n+1B

(e
o

a21

= B
0 0
Ap41,1 0
0 - 0] agpwa OO0 - 000
a115n+1,1 a115n+1,2 : a1lbn+1,n a1lbn+1,n+1 a11bn+1,n+2 0 -0
a21bn+1,1 a2lbn+1,2 : a21bn+1,n a2lbn+1,n+1 a21bn+1,n+2 0 -0
0 0 : 0 0 0 0 -0
0 0 . 0 0 0 0
an+1,1bn+1,1 an+1,1bn+1,2 : an+1,1bn+1,n an+1,1bn+1,n+1 an+1,1bn+1,n+2 0
azn,lbn+1,1 Cl2n,1bn+1,2 : &2n,1bn+1,n Cl2n,1bn+1,n+1 Gzn,lbn+1,n+2 0 -0

This implies that

(A, Inp, + €1,0+1) = A(Lo, + 61,n+1)A_1(I2n —e1nt1) = (Lon + A€1,n+1A_1)(-72n — €1n+1)

-1 -1
= I, + A€y 1A —e1 41 — A1 A e

1+ai1bpy1n a11bny1,2 . a11bpti1,n a11(bn41,n+1 — bnt1,1) — 1 a11bpy1,nt2 0 0
a21bni1,1 14 a21bpp1,2 - a21bni1,n a21(bn41,n+1 — bniy1,1) a21bn41 nt2 0 0
0 0 . 0 0 0 0 0
- 0 0 . 1 0 0 0 0
an4+1,10n41,1  @nt1,1bny12  @ng1,1bnyin ant1,1(nt1,nt1 —bnt1,1) +1  ang11bngfing2 O 0
a2n,1bn41,1 a2n,1bn41,2 . a2n,1bn,n a2n,1(bn41,n41 — bniy1,1) a2n,10n4+1,n+2 o - 1

This is precisely the form claimed in the lemma. O

Next, we use the commutator from the previous Lemma to obtain a double commutator

with a low number of non-zero entries:

Lemma 4.1.7. Let R be a commutative ring with 1 and n > 3 and let X € Spy,(R) be
of the same form as the commutator X described in Lemmal4. 1.6l Then the commutator
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Z = (X, Iop + ean1 + €nt1,n) has the form

0 2in 0 0 0 -0
0 Zam 0 0 0 -0
0 0 0 0 0 -0
0 1 0
7 —
0 : 0 Zn+ln 1
0 - 0 Zyan| O 1 0 -0
0 - 0 Zpin| O 0 0 -0
Zon,1 ° Z2nn—1 2n,n 2nn+1  *2nn+2 0 -1

with 21, = Tipt1 ond 29, = Topi1.

Proof. Let Y = (yij)1<i j<2n be the inverse of X. We must study the following term:

X (ean1 + €n+1,n)X71 = (X€2n,l>X71 + X<€n+1,nX71> = e 1Y + Xept1n

0 0o - 0 0 0 0O -0 0 - 0 Zip4 0O -0
0O -0 L2 n+1 0O -0
0o - 0 0 0 0O -0 0O -0 0 0O -0
= +
o 0 - 0 0 0 0O -0 0O -0 0 0
0 -0 Tpn+1,n+1 0
0 0o - 0 0 0 0O -0
Yir Y12 Yin | Yintr Yips2 O - 0 0 - 0 wpper |0 - 0
T1n+1 0 0 0 - 0
T2 n+1 0 0
0 0 0 0
o - o0 0 0
0 xn-{—l,n—‘rl
0 - 0 Tnsonit 0 0 0 -0
0o - 0 Ton—1,n+1 0 0 0
Yir © Yin-1 Yin T Tonntt | Yinrr Yine2 0 - 0
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Next, observe that
X<€2n,1 + en+1,n)X71(€2n,1 + enJrl,n) = Y1,n+1€2n,n-
Hence the matrix

(X, IZn + €an,1 + en—l—l,n) = (I2n + X<e2n,1 + en+1,n)X71)(]2n — €an,1 — en—l—l,n)
= I, + X(ean1 + 6n+1,n)X_1 — (e2n.1 + €nt1n)
- X(€2n,1 + en—i-l,n)X_l(eQn,l + en—l—l,n)

-1
= ]2n + 6271,1)( + Xen—i—l,n — €1 — En41n — Y1 n+1€2nn

has the desired form. OJ

Lemma 4.1.8. Let R be a commutative ring with 1 and n > 3 and let Z € Sp,,(R) be of

the same form as the commutator Z in Lemma /. 1.7

1. Then the matriz (Z, s, + eny11) has the form Lo, + a(€ni1n + €2n1) + beann for

a= -z, andb=2%.

2. Then the matriz (Z, Iy, + €n122) has the form Iy, + a(enian + €2n2) + beann for

a=—2, andb=z3,

Proof. Set U := Z~'. Then U also has the form

ul,n
U2.n
0
0 1 0
Un+1,n
0 « 0 Upgon| O
0 « 0  usmin| O 0 0 -0
Uon,1 * U2pnn-—1 U2n,n U2n,n+1  U2n,n+2 0

First, observe

-1
Zeni112 " = (ent11 + 2onni1€2n.1)U = €ni11 + Ui nniin + 22nnt1(€2n1 + Ut n€onn)-
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This implies

(Z,Ion + €ny11) = (Ion + Zen+1,1271)(~[2n — €nt11)
= (Iyp + €nt11 + Ut nniin + 22nnt1(€2n1 + Ut n€2nn))(Lon — €nt11)

- IQn + UL n€n+ln + ZQn,n+l(€2n,1 + ul,n62n,n>-

Next, observe w1, = 2z, nt1 = —21, and this gives the first claim of the lemma. The

second claim follows the same way. ]
Last, observe the following commutator formulas:

Lemma 4.1.9. Let R be a commutative ring with 1 and n > 3 and let a,b,x € R be

given.
1. Let S = Iy, + a(eni1n + €2n.1) + beany, be given. Then
(S, IZn + .T(€12 - en+2,n+l)) = [271, + a$(€2n,2 + en+27n)

holds.

2. Let S = Iy, + a(enson + €2n2) + beann € Spy, (R) be given. Then

(S, Iy, + I(€2,1 - en+1,n+2>> = I, + a$(62n,1 + €n+1,n)
holds.
Proof. For the first commutator formula note:
S = ([2n + a(€n+1,n + e2n,1)) : <[2n + beQn,n>~

Further I, + bey, , commutes with Iy, + z(e12 — €n42,+1). Hence

(S, I + x(€12 = ny2nt1)) = (Ton + al€nyin + €20,1), Lon + (€12 — €ntant1))
= [Lon + 2(Ion + aléntin + €2n,1)) - (€12 = €ntone) - (Lan — alentin + €2n,1))]
. (IQn — I(€12 — €n+2,n+1))
= [Lon + z(€12 — €nsont1 + a€22) - (Ion — aleniin + €20,1))] - (Ton — (€12 — €nt2,n11))
= [Ion + (€12 — Cnyons1 + @22 + a€nizn)] - (I2n — (€12 — €nyoni1))

= Iy, + aw(€2n,2 + €n+2,n)'

follows.

For the second commutator formula note:

S = (IQn + a(6n+2,n + 6271,2)) : (IZn + beZn,n)-
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Further Iy, + bey, ,, commutes with Iy, + z(e21 — €p41n42). Hence

(S, Loy, + w(e21 — eni1mt2)) = (Ton + a(enion + €2n2), Ion + x(€21 — €pi1ni2))
= [Lon + 2(L2n + alens2n + €202)) - (€21 — €ns1mr2) - (Ton — al€nizn + €2n2))]
(fon — (€21 — €ntin42))
= [Lon + x(€21 — €nt1nt2 + €2 1) - (Lon — al€nion + €2n2))] - (Lo — (€21 — €nt1n42))
= [Lon + (€21 — €nt1nt2 + @€2p1 + aCpi1n)] - (Lon — (€21 — €pt1n42))

= Iy, + aw(€2n,1 + €n+1,n)-

follows. O

The second Hessenberg Form

Lemma 4.1.10. Let R be a principal ideal domain and let n > 3 be given. Then for each
A € Sp,,,(R) there is a matriz B € Sp,,,(R) such that A’ := BAB™! has the form:

/ /
Al Al
/ / / L / /
an—i—l,l an+1,2 a’n+1,3 an—i—l,n—Q an+1,n—1 an+1,n
/ / / / / !/
Apio1 Qpyo2 Opyo3 ° Quiop-2o Auiop-1 OQupiog
A = / / / / /
0 Upy3o QApy3s ° Guigzn-2 Opi3n-1 Ani3n A
0 0 al - al al a 4
n+4,3 n+4,n—2 n+4,n—1 n+4,n
/ /
0 0 0 ’ 0 a2n,n71 a2n,n
with @, o, = gcd(@ni2,1, ni31s - - -, A1) We call a matriz of the form of A" in Spa,(R)

a matriz in second Hessenberg form.
We omit the proof, as it is very similar to the one of Lemma 4.1.4]

Lemma 4.1.11. Let R be a commutative ring with 1 and n > 3 and let A be a matrix
in second Hessenberg form in Spa,(R) and B = A™'. Then X := (A, I, + €1.,11) has the
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following form:

with Tpyont+1 = an+2,1(bn+1,n+1 - bn+1,1) and Tint+1 = a11(bn+1,n+1 - bn+1,1) — L

T1,1 T1,2 T1n+1 L1,2n
X211 X292 L2 n+1 T22n
Tn,1 Tn,2 0 1 Tnon+1 Tn2n
Tn4+11 Tn41,2 0 0 Tn41,n+1 Tn+1,2n
Tn421 Tp42,2 0 0 Tn42n+1 Tn+2,2n
0 0 0 0 0 0
0 0 0 0 0 1

Proof. Let Ay, A3, Ay € R™™" be given such that A has the following form:

Then for the matrices By :=

Ay Ay
p+11 An41,2 Op413 p+in—2 Optln—1 Qniln
Gp421 An422 Gpi23 p42n—2 Any2n—1 Gni2n
0 p432 Ony33 (nt3n-2 Ont3n-1 Gnidn |
4
0 0 (p+4,3 Upydan—2 Opydn—1 Qnian
0 0 0 0 a2n,n71 a2n,n
—AT By := AT B, := AT € R™", one has:
By By
bn+1,1 bn+1,2 0 0 0 0
bon—31 ban—32 bop_33 bon—3n—2 0 0 B
4
b2n—2,1 b2n—2,2 b2n—2,3 b2n—2,n—2 b2n—2,n—1 0
b2n71,1 b2n71,2 b2n71,3 b2n71,n72 banl,nfl anfl,n
b2n,1 b2n,2 b2n,3 b?n,n—Z b2n,n—1 b2n,n
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Observe first:

-1
Ael,n+1A = A€1,n+1B

0O -0 a171
0O -0 a21 0 0
0 O app 0 O 0 00
= 0 O| ant11 0 O 000 |B
0 O| apg21 0 O 0 00
0 0 0 0 0 0 00
0 0 0 0 0 0 00
a11bn+1,1 a11bn+1,2 0 a1lbn+1,n+1 : G1lbn+1,2n
a21bn+1,1 a21bn+1,2 0 a21bn+1,n+1 : a21bn+1,2n
an,lbn+1,1 an,lbn+1,2 0 0 Gn,lbn+1,n+1 : an,lbn+1,2n
- an+1,1bn+1,1 Gn+1,1bn+1,2 0 0 an+1,1bn+1,n+1 : an+1,1bn+1,2n
an+2,1bn+1,1 an+2,1bn+1,2 0 0 an+2,1bn+1,n+1 : an+2,1bn+1,2n
0 0 0 0 0 . 0
0 0 0 -0 0 0

This implies that

(A, Iy + €1n11) = ATan + €1041) A (Ton — €1.041) = (Ton + Aer 1 A7) (T2n — €1041)

= Iop + A1 ni1B — €1 n41 — Aer pr1Ber ng

1+a11bnt1,1 a11bn41,2 o - 0 a11(bn41,n+1 — bnt1,1) — 1 a11bn41,n42 : a11bn41,2n
a21bp41,1 1+a21bpy1,2 0O 0 a21(bn4+1,n4+1 — bnt1,1) a21bp 41 nt2 : a21bn41,2n
an 1bny11 an 1bny12 0 1 an1(bnt1,nt1 —bnyi1) an 1bnt1 ny2 : an 1bni1,2n
= an+t1,1bn41,1  ant1,1bpy12 O 0 1+apt1,1(0nt1,nt1 —bnt1,1) Ap41,10n41,n+2 © ap41,1bnt12n
an42,1bnt1,1  ant2,1bn41,2 0 0 an42,1(bnt1,n+1 = bny1,1) 1+ ant2,1bnt1,n+2  °  @nt21bnt1,2n
0 0 0 0 0 0 . 0
0 0 0 . 0 0 0 . 1
This is precisely the form claimed in the lemma. O]

Lemma 4.1.12. Let R be a commutative ring with 1 and n > 3 and let X € Spa,(R) be
of the same form as the commutator X described in Lemma |{.1.11. Then for Y = X!
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the commutator Z := (X, Iy + €n1 — €nt1,2,) has the form

0 0 0 0 0 Z1,2n
Zn,l  Zn2 0 1 Zn,n+1 Zn2n—1 Zn,2n
7 — 0 0 0 1 0 Zn+1,2n
0 0 0 0 0 Zn42,2n
0O 0 0 0 0
0 0 0 0 0
with Zy422n = —Tpt2nt+1 ANd 212, = —T1 41

Proof. We must study the following term:

X<en,1 - €n+1,2n)X_1 = (Xen,l)X_l - X(en+1,2nX_1) = en,lY - X€n+1,2n

0 0 O 0 0 0 0O - 00 —T1n+1
yii Yz 0 0 Yin+1 Yi,2n 0 010 —Tnn+l
_ 0O 0 O 0 0 N 0 0] 0 —Tpg1ntl
0 0 O 0 0 0 0] 0 —Tpt2n+1
0 0 0 0 0 0|0 0
0 0 O 0 0 0 0 0] 0 0
0 0 0 -0| 0 0 1
yir yi2 0 0 Yi,n+1 Y12n—1 Yi12n — Tnn+l
B 0O 0 O 0 0 0 —Tpt1nt1
0 0 O 0 0 0 —Tpi2.nt1
0 0 O 0 0 0 0
0 0 O 0 0 0 0
Next, observe
X(en,l - en+1,2n)X71(en,l - €n+1,2n) = —Y1,n+16n2n-
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Hence the matrix

(X7 I2n + 6n,l - €n+1,2n> = (IQTL + X(en,l - €n+1,2n)X71)<12n - en,l + €n+1,2n)
- ]2n + X(en,l - 6n+1,2n)X_1 — €n,1 + €n+1,2n
- X(en,l - €n+1,2n)X_1(en,1 - €n+1,2n)
- IQn + X<€n,1 - e71—&-1,271))(_1 — €n1 + €n+1,2n + Y1,n+1€n2n
has the desired form. O

Next, we have the following:

Lemma 4.1.13. Let R be a commutative ring with 1 and n > 3 and let Z € Sp,, (R) be
of the same form as the commutator Z in Lemma|4.1.12. Then

1. Then the matriz (Z7, Iy, +e,.1.1) has the form I, — 21 2n(€n1 — €nt1.2n) +z%72nen72n.
2. Then the matriz (Z, Ion+es n12) has the form Ign—zn+2,2n(en7n+2+6272n)—I—z721+2’2nen72n.
The proof is straightforward so we will omit it.

Lemma 4.1.14. Let R be a commutative ring with 1 and n > 3 and let a,b,x € R be

given.
1. Let S = Iy, + alen1 — eny1.90) + beno, be given. Then
(S, Loy, + z(€10—1 — €an—1n41)) = Lon + az(€pn_1 — €2n-12n)

holds.

2. Let S = I, + a(ennt2 + €22,) + bey 2, be given. Then

(S, Ion + (enta,1 + €nt1,2)) = Lo + az(ens — €ny1.20)

holds.

Again, the calculations are straightforward, so we are going to omit them.

Constructing the level ideal

We will apply the previous calculations to various matrices. First, note the following

proposition:

Proposition 4.1.15. Let R be a principal ideal domain, n > 3 and A = (a;j)1<ij<on €
Span(R) be given. Then there are ideals

1. I(A) C £,(A,32) with ay, ... ,ng € 1Y(A) and
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2. I®(A) C e,(A,32) with apsoi, ..., a1 € IV (A).
We denote the ideal IF)(A) + IP(A) C £,(A,64) by I,(A).

Proof. The proof will be split in two parts. First we are going to construct the ideal 11(1) (A)

. . . 2 ..
containing as 1, ..., a, 1 and then the second ideal Il( )(A) containing @421, ..., .1

For the first ideal put A in first Hessenberg form and call the resulting matrix A" =
(a;j)lgi’jggn with inverse B’ = (bgj)lgi,jg%’b' Then apply Lemma to A’ to obtain a
matrix X = (7ij)1<ij<on as in the lemma with entries 21,41 = @}y (0,4 1,01 — 0, 111) — 1
and Ty, = ay (U411 — 011). Note X € Bs(2). Next, apply Lemma m to
obtain a matrix Z = (Zij)lgi,jSQn with 21n = Tin+l = alll(b;‘b+1,n+1 — b{rz—l—l,l) — 1 and

Zom = Topi1 = Ay (04101 — Uny1)- Note Z € Ba(4). Next, we apply Lemma to
obtain two matrices S; and Sy and then Lemma to obtain for all x € R matrices
Ti(z), To(x) € B4(16) with

Ti(7) = Ipp + 221 0(C2n2 + €ny2n) = Ion + rak, ((b;z+1,n+1 - b;z+1,1) - 1) (e2n2 + €ntan)

TQ(£) - I2n + xZQ,n(GQn,l + en+1,n) = [2n + $a,21 (b;,L+1,n+1 — b/n+171)(e2n,1 + en—‘—l,n)‘

Both of these matrices are root elements associated to short roots and hence as x € R

was arbitrary, after conjugation with suitable Weyl-group elements, we obtain

1
[1( )(A) = (alll(b;z+1,n+1 - b;L-F].,l) -1 a/21(b;1+l,n+1 - bln-l—l,l)) C g5(4A, 32).

Note
alll(b;L+1,n+1 - b;z+1,1) =1 mod Ifl)(A)-

Hence it follows
1
0=0-a}; = ay( ;H‘l,n-i-l - b;z+1,1)a/11 = aj, - 1 = ay; mod [f )(A)-

and hence ay; € IV(A) holds. But according to Lemma , the entry aj, of the matrix
A’ is up to multiplication with a unit ged(asi, ..., a,1) for the entries ag, ..., an,; of the
initial matrix A. So in particular, we obtain for an arbitrary matrix A € Sp,, (R) that
(@21, ...,an,1) is a subset of Il(l)(A).

Running through the same line of calculations again, but using the second Hessenberg

form and the Lemmas [4.1.11| through Lemma [4.1.14| instead, yields the ideal I (A) C
£5(A,32) With anya1, ..., a1 € 12 (A). 0

The proposition yields all of-diagonal entries of the first column save for the single

entry a,411 as arguments x for root elements e4(x) for z € R and ¢ € C, short. In the
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next proposition, we will explain how to obtain all off-diagonal entries in €,(A, K) for an

appropriate K € N.

Proposition 4.1.16. Let R be a principal ideal domain, n > 3 and let A = (a;;)1<ij<2n €
SPs, (R) be given. Then there is an ideal I'(A) such that the following two properties hold:

1. I'(A) C e5(A,320n) and
2. (aij|1 <i#j <2n)U (i — QG101 Gnpinti — Gnritinritt |1l <@ <n) CI'(A).

Proof. First, define for 2 < k < n the elements:

Wk = €1k — €k1 T entlntk — Cnthkntl T § €5 € SPa, (R).
1<j<2n,j#1,k,n+1n+k

The first column of the matrix A := kaw,;I is
T
(ak‘,k‘a A2 ks -+ o s Q=1 ky —A1 ky Q41 ks -+ -5 An ks Antkky Ant2)k - - 5 Antk—1,ky —Ant1,ks An4-k+2)ky - - - ;a'2n,k)

Hence applying Proposition 4.1.15|to all of the matrices As, ..., A, and the matrix A; :=
A, there are ideals ;(A;), ..., 1(A,) all of them contained in £4(A, 64) with

Al ks -y An ks Antlky - - -5 Qntk—1.ks Antk+2.ks - - - W2nk € Il(Ak)

for k > 2 and

ag1y---,an1,An4+21, -, A2n1 € Il(Al)

So, the ideal I5(A) := I1(Ay)+- -+ [1(A,) is contained in £4(A, 64n) and contains all off-
diagonal entries of the first n columns of A except possibly the entries a,+11, ant22, ..., G2nn-
Next, observe that J itself is an element of Sp,,(R) and choose M, My, M3, My € R"™"

with
M, | M
A= ]2 )
My | M,
Then we obtain
0, | -1, M, | M M, | =M 0, | I,
A =JtAT = ‘ . 1‘ 2 ).J= 3 4.
In\ 0, Mg\ M, M, | M, —1,] 0,
(M| -
—My | M,

This implies, that if we apply the previous construction of I5(A) to the matrix A’, then we
obtain an ideal I5(A’) C e4(A’,64n) = 5(A, 64n) that contains all off-diagonal entries of
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the last n columns of A, except possibly the entries @y 41, ..., ay2,. Thus if we consider
the ideal I}(A) := I1(A) + I3(A’) C e5(A,128n), it follows:

a1 0 0 0 a1 mt1 0 0 0
0 ass 0 0 0 as,ni2 0 0
_ 0 0 0 ann 0 0 0 an 2n !
A= : mod I5(A).
an+41,1 0 (U 0 Ant1,n+1 0 o - 0 3

0 aniaa O - 0 0 ant2ntz O - 0

0 0 o - agn,n 0 0 o - asn,2n

Thus the ideal I3(A) := (aij, @intjr Gntijs Gnrintj|l <1 7# 7 < n)is contained in I5(A) C
e.(A, 128n).

Consequently, one also has

Ant1,n41 0 o - 0 —a1,nt1 0 o - 0
0 @niamyz O - 0 0 —ay 42 O - 0
-1 0 0 0 a2n,2n 0 0 0 —an,2n ( )
A = mr—— 5 5 - _ 5 5 . mod I5(A).
0 —Qn42,2 0 0 as 2 0 0
0 0 0 —aon.m 0 0 0 an.n

These congruences for A and A~! imply

A" = (A, L, + €12 — €nt2n+t1)
([2n + A(€1,2 - en+2,n+1>A71) ) ([211 — €12+ €n+2,n+1)

-1
[[2n + (a11€12 + Ani116n412 — Q201262 041 — Gpi2n4+2€n+2n4+1)A }

(Iyp, — €12+ €niont1)

[Ion + a11(Ant2nt2€12 — A2.n42€1 n+2) + Gni11(Ang2.n+26n412 — Q20426041 n42)
- az,n+2(—an+1,1€2,1 + a116’2,n+1) - an+2,n+2(—an+1,1€n+2,1 + a11€n+2,n+1)]

: (IQn - 6172 + en+2,n+1)

= Iy, + @11(@n+2,n+2€12 - a2,n+2€1,n+2) + an+1,1(an+2,n+2€n+1,2 - az,n+2€n+1,n+2)
— g nt2(—Ant11€21 + A11€2041) — Antant2(—Cni11€nt21 + Q11€n42041)

— €12t €eniont1 — Apt1,1027+2€22 — Uni1,102n42€n11,n+1

— Op42n+20n4+1,16n422 — @1102 n4+2€1 nt1

1 a11an42,nt2 — 1 o - 0 —a1162 n42 —ag p4+2011 0 0
a2 n428n4+1,1 1—apy1,102,n42 0 - O —ag p42a11 0 0 0
0 0 0 . 1 0 0 0 . 0

= mod I3(A).
0 An41,10n+2,n+2 o - 0 1—apt1,102,n42 —@n41,102n+2 O - O
An+2,n+20n+1,1 —Gnt+2,n+28n+1,1 O - O 1 —apny2 nt2a11 0
0 0 0 . 0 0 0 0 . 1

Note that the (n + 2,1)-entry a, o, of A” is congruent to dpiom420n41,1 modulo I3(A)
and the (1, 2)-entry of A” is congruent to a,12 542011 — 1 modulo I3(A). Further note that
A" e BA(Q)
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Next, apply Proposition [4.1.15)2) to the matrix A” to obtain an ideal
1) 72 g "
I;7(A) =17 (A") Ces(A”,32) Cey(A,64)

that contains a;;+271, an element, which is congruent to a,+2,4+20,+1,1 modulo I3(A).

So for each element X = (z;;) of Sp,,(R), there is an ideal IV(X) C e4(X,64) which
contains modulo [3(X) the element ;49 n12Tn411-

Consider next, the matrix B,(2) > A% := wyA"w; ' and note that its (2, 1)-entry is
congruent modulo I5(A) to a11an42,n+2 — 1. Apply Proposition 1.1.15[1) to A} to obtain
an ideal

I (A) = I (AY) C ,(AY,32) C 4(A, 64)

that contains the (2, 1)-entry of AJ, which is congruent to a11Gy 42,42 — 1 modulo I5(A).

The properties of these ideals imply that the ideal
(3) e 7@ pnr (L) g _
I7(A) = L7 (A") + I}/ (AY) Ces(A, 644 64) = e,(A, 128)

contains modulo I3(A), the elements a,42,42a11 — 1 and @42 420,411 and consequently
the element a,41; modulo 3(A).

Phrased differently, for each matrix X € Sp,, (R), there is an ideal I (X) C £,(X, 128),
which contains modulo the ideal I3(X) the element x,1 1 and 2,49 10211 — 1.

Observe that for [ = 3,...,n, the conjugate A; of A defined before has

1. (n+1,1)-entry equal to a,4y,
2. (n+2,n + 2)-entry equal to @, 42,12 and
3. (1,1)-entry equal to a;;.
Further, the conjugate Ay of A defined before has
1. (n+1,1)-entry equal to a, 422,
2. (n+2,n + 2)-entry equal to @, 41,41 and
3. (1,1)-entry equal to ass.

Hence applying the previous construction of the ideal If’) (X)) to the conjugates A, Az, ..., A,
then yields ideals I{”(A,), ..., I{Y(A,) C ,(A,128) with the properties that

1. for I = 2,3...,n the ideal If’) (A;) contains the elements a,;; modulo the ideal
I3(A) = I3(A),

2. for [ = 3,...,n the ideal If’) (A;) contains the element a2 ,42a;; — 1 modulo the
ideal I3(A;) = I3(A) and
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To summarize, the ideal
o (3) (3) o (3)
Ii(A) = L(A) + 1,7 (A) + 1,7 (Ay) + - - -+ 1,7 (A,) Ces(A,256n)

contains all the entries ap411, ..., G2np A0 Apyo py2a11—1, Apyopioazs—1, ..., Angp2nt20nn—

1. This implies:

ail 0 0 0 a1 nt1 0 0o - 0
0 ax O 0 0 azmiz O - 0
_ 0 ) ann 0 0 0 - anon ( )
A= o o o [ et 5 ERE— mod I,(A).
0 0o 0o - 0 0 antzmi2 O - 0
0 0 o - 0 0 0 0 - az2n:2n

But A is an element of Sp,,(R) and hence
Qntin+r = 1 mod I4(A)

holds for all I = 1,...,n. Thus (anyins + L(A)™! = ay; + Ii(A) holds in R/I,(A). On
the other hand a, 42 ,40011 — 1, Gng2n42a33 — 1,..., Gpi2nt2an, — 1 are all elements of

I,(A) and hence
arn+ 1(A) = a3+ Ii(A) =+ = ap, + 14(A) = (@ng2nia + I4<A))71 = agy + 14(A)

holds in the ring R/I4(A) as well. Thus we obtain

ag2 0 0 . 0 a1, n+1 0 0 0
0 axw O - 0 0 as nio 0 0
_ 0 0 0 - as 0 0 0 an om ( )
A= R e R — 5 5 mod I, (A
0 o 0 - o0 0 antonmiz O - 0
0 o 0 - 0 0 0 0 - apt2nio

Note in particular, that all diagonal entries of A reduce to units in R/I,(A).

Similarly, for A’ = J~YAJ consider the conjugates A; := w;A'w; ! for [ = 2,... n.
Observe that for [ = 3,...,n the (n+ 1,1)-entry of A; is —a;,,1; and the (n + 2,n + 2)-
entry is ago. For Al the (n+ 1,1)-entry is —ag 1o and the (n + 2,n + 2)-entry is ay ;.
Further, for A’ the (n + 1, 1)-entry is —ay 41 and the (n + 2,n + 2)-entry is ag .

Next, consider the ideals I3V (A"), IV (A}), ... IV (A") C £,(A,64) and observe that
according to the construction of these ideals, one has that

1. the ideal IS)(A’) contains the element —ay ;41022 modulo I3(A") = I3(A),

2. for 1 =3,...,n, the ideal L&l)(A;) contains the element —a; ;a2 2 modulo I3(A4;) =

]3 (A) and
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3. the ideal If)(A’z) contains the element —as 42611 modulo I3(A}) = I3(A).
Next, consider the ideal:
I'(A) = L(A) + I(A) + I (AY) + -+ V(AL C e(A,256n + 64n)
= ,(A, 320n).
As I3(A) C I'(A), one concludes that
1. —ay 4102 is an element of I'(A),
2. for [ = 3,...,n, the element —a, ;a2 is contained in I'(A) and
3. the element —as ,12a;1 is contained in I’(A).

But remember that all diagonal entries of A reduce to units in R/I;(A) and consequently
also reduce to units in R/I'(A). Hence as a1 11022, G3n13022; - - -, Qn2n022 aNd A2 42011
are all elements of I'(A), we obtain that ay ,11,a3n+3,- .-, 0n2n, G2n+2 are also elements
of I'(A). Hence we obtain

ass 0 0 0 0 0 0 0
0 azxp O 0 0 0 0 0
_ 0 0 0 a2z 0 0 0 - 0 /
A= 0 0o 0 0 Ani2.mie 0 R 0 mod / (A)
0 0o 0 0 0 @niangz O - 0
0 0 0 0 0 0 0 - any2,nt2
This finishes the proof. O

Remark 4.1.17. For a given element A € Sp,,,(R), it is possible that any one of the many
intermediate ideals I making up I'(A) in the previous proof is already the entire ring R.
In this case, it is problematic to speak about units in the quotient R/I or R/I'(A), as
we do in the proof. However, if any of the intermediate ideals [ is already the entire ring
R, then the claim of Proposition is obvious anyway. This is an unstated caveat
in many of the proofs to follow: If the construction of the sought after ideal yields an
intermediate ideal I which is already the entire ring R (or the appropriate analogue, say
2R in case of Sp,(R)), the claim of the corresponding statement is then usually true for
this intermediate ideal I = R already. All following proofs should be read with this caveat
in mind.

Modulo the ideal I'(A) of the previous proposition, we have now reduced A to a
diagonal matrix of the form (ay; + I'(A))I, & (a1 + I'(A))"'1,. Next, we are going to
prove Theorem [£.1.3}
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Proof. Consider the matrix A= (A7 I, + €951 + €nt1.0) € Ba(2) and apply Proposi-
tion [4.1.15(2) to the matrix A to obtain an ideal

@ (ﬁ) C e, (IL, 32) C ey (A, 64)
that contains in particular the (2n, 1)-entry of A. Define next
I(A) = I'(A) + 1® (K) C e4(A, 64 4+ 320n) = £,(A, 64(1 + 5n))
for I'(A) the ideal of Proposition [£.1.16] Slightly abusing notation, we obtain next:

A;I — (A_ly I2n + €on,1 + en—i-l,n) - [I2n + A_1(€2n,1 + en—l—l,n)A] ' (I2n — Ent+1ln — 6271,1)

i -1
a In On a In On
]2n + ( Ll ‘ ) (6271,1 + en—l—l,n) ( bl ‘ )] : (I2n — Ent+1n — e2n,1)

-1
On ‘ al,lln On ‘ a171[n

al,IIn On
= | Iy + a11(e2n1 + €nt1n) ( ‘ )] (Lo — €ps1n — €2n,1)

-1
0, | aill,

= [[211 + ail(GZn,l + €n+1,n)] : ([2n — En+tin — e2n,1)

= Iy + (a3 1 — 1)(€20,1 + €ny1,n) mod I'(A).

This implies that the (2n,1)-entry of A is congruent to af; — 1 modulo I'(A). This
implies af; — 1 € I(A). Let m be a maximal ideal in V(I(A)). Note (a11 — 1)(a1141) =
a%,l — 1 € m and so either a;; — 1 or a;; + 1 is an element of m. But in either case,
one has (a;; +m)~' = a1 + m in the ring R/m and so 7,,(A) is necessarily scalar and
thus central in Sp,, (R/m). Hence m is also an element of II({A}) and this finishes the
proof. O]

We also note the following corollary of the proof:

Corollary 4.1.18. Let R be a principal ideal domain, n > 3, A € Sp,,,(R). Then the ideal
I(A) of Theorem[{.1.5is a sum of ideals Ji(A), ..., Jini1(A) such that J;(A) C e5(A,64)
holds for all 1 <1 < Tn + 1.

Proof. Recall the Weyl group elements

Wy 1= €1k — €g1 T Entintk — Enthkn+l T E €jj € SPan(R).
1<5<2n,j#1,k,n+1n+k

for £k = 2,...,n. Then X} shall denote the conjugates kawlzl for k = 2,...,n and an
arbitrary X € Sp,,(R). Going through the proofs, one can see that I(A) is the sum of
the following ideals:

L I(A), IV (As), . TV (AL), TP (A), 1P (Ay), . TP (A, IV(A), 10 (AY), .. 1Y
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and I(A), IP(AL), ... IV (A) for A" := J-'AJ. These 4n ideals are all individ-
ually contained in £4(A, 32).

2. I{V(A), IV(4y), ..., I{V(4,) and I2(A), I (Ay), ..., I (A,). These 2n ideals are
all individually contained in £5(A, 64).

3. ]f) (A", Lil)(A’Q), e Lil)(A;I). These n ideals are all individually contained in e4(A, 64).
4. ]fz)(g) for A:= (A7, I, + €an1 + €nt1,n). This ideal is contained in 4(A, 64).

So to summarize: [(A) is the sum of 7n 4 1 ideals that are all individually contained in
es(A, 64). O

Remark 4.1.19. We have used n > 3 at various places in the course of this section. First
and foremost, one cannot even put matrices in Hessenberg forms if n = 2, because the
constructions of Hessenberg forms rely on the block matrices used to conjugate A to have
at least one trivial column and row, which cannot be done in the same way for n = 2.
Second, for various commutator formulas, the root elements or products of root elements
obtained would take on a ‘degenerate form’, where instead of having a root element, with
two off-diagonal entries, we would only get one off-diagonal entry and this one would admit
an additional factor of 2. This might happen for example in the first part of Lemma [4.1.9|

where n = 2 implies:
Iop + az(ean2 + enton) = In + ax(es2 + €2422) = Iy + 2azeys.

The possibility to avoid the use of these degenerate commutator formulas is due to the
presence of a root subsystem of C,, spanned by simple roots in C,, and isomorphic to A,
for n > 3.

4.2 Explicit bounds for root elements of Sp,(R)

In this section, we determine L(C5) for principal ideal domains:

Theorem 4.2.1. Let R be a principal ideal domain and let A € Spy(R) be given. Then
there is an ideal 1(A) in R such that

1. V(I(A)) C II({A}) and
2. 2I(A) C e(A, ¢,384) holds for all ¢ € Cs.

Phrased differently, for R a principal ideal domain, one can can pick L(Cy) in Theo-

rem as L(Cy) = 384.

As a first step, we establish a form of Hessenberg matrices in Sp,(R) :

70



Lemma 4.2.2. Let R be a principal ideal domain and A = (a;j)1<ij<a € Sps(R). Then
there is a matriz B € Sp,(R) such that BAB™" has (3, 2)-entry 0 and the same (4, 2)-entry
as A.

Proof. If az» = 0, then we are done. Otherwise choose t := ged(ag 2, a12), 2 = (1372 and
Y= —‘”T’Q. Observe that z,y € R are coprime and hence we can find u,v € R such that

xv —yu = 1. Then the matrix

u 0 0
0 1 0
B =
z Oly O
0 0|0 1
is an element of Sp,(R) and has the desired property. ]

From this one can obtain:

Lemma 4.2.3. Let R be a commutative ring with 1 and let A = (a;;)1<ij<a € Sps(R) be
given with azo = 0. Then X = (A, I, + ea4) has the form

1 Ti12 | T13 T14

0 Too2 | T23 T24

0 0 1 0

0 T2 | Ta3 Ta4

with T4 = —aj ,.
We will omit the proof, as it is straight forward. Next:

Lemma 4.2.4. Let R be a commutative ring with 1 and let X € Sp,(R) be of the same
form as the commutator X in the Lemma[{.2.3 Then the commutator Z = (X, Iy +

€23 + €14) has the form
Z =14+ aern — eq3) + blers + ea3) + cers

with a = —x492,b =229 — 1 and ¢ = 215 + T4 9.
Again, we omit the proof. Next, we obtain:

Lemma 4.2.5. Let R be a commutative ring with 1 and let a,b,c,x € R be given. Further
let Z = Iy + a(ern — eq3) + b(ews + ea3) + cer s be given. Then (Z, 14 + x(e14 + €23)) =
I,y + 2aze; 3 holds.

Again, we omit the proof. From this we can obtain:
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Proposition 4.2.6. Let R be a principal ideal domain and A € Sp,(R) be given. Then
2a3,R C e(A, ¢,8) holds for all ¢ € Cy long.

Proof. Observe that according to Lemma the matrix A is conjugate to a matrix A’
with a3, = 0 and aj, = a4». So assume azy = 0. Then applying first Lemma to
obtain a matrix X, then Lemma to X to obtain a matrix Z and then lastly applying
Lemma to Z yields that

2a3,R = 2af,R C €(A, ¢,8)

for ¢ € (5 long. ]

Using Proposition we can prove Theorem [4.2.1}

Proof. The basic idea is to construct different matrices from A = (a;;) that have (powers
of) entries of A in their respective (4,2)-entry and then to apply Proposition [1.2.6]
First, note that applying Lemma 4.2.2] we may assume that azs = 0 and let ¢ € Cy

be an arbitrary long root. First, we define the matrix:
Wo = €19 — €31+ €34 — €43 € Spy(R).
Observe that the (4,2)-entry of wyAw; "' is az; and hence Proposition m yields
2a3 R C e(A, $,8).

Similarly woJ tAJw, ! has the (4,2)-entry —a; 3 and J~'AJ has the (4,2)-entry —as 4.
Thus Proposition [4.2.6] yields

2(@21,27 ag,lv a%,:s? a§74) Ce(A,¢,32).

Next, consider the matrix

2
a14a34  a14(agq + a24) —ajy  —Q14G24
2
, 24031  A24(Qg4 + Q24) —Q14Q24  —0jy
BA(Q) 5 A = (A,I4+€472) =1+ 5
a3, azq(aqq + asyg) —a34014 —a34024
Q440a34 a44(a44 + Cl24) — 1| —a14044 —a44a24

Observe that woA'w; ! has the (4,2)-entry a3, and hence Proposition implies

2a3,R C e(wyA'wy", ¢,8) = (A, ¢,8) = (A, ¢, 16).
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Thus for each matrix X = (x;;) € Sp,(R) one has
I(X) :=2x3,R C e(X, ¢, 16). (4.1)

Next, observe that J~'A’J has the form

2
—a34014 —Q34024 —Q3y —a34(a44 + Cl24)
1 —Q14044 —Q4402q | —044035 —Cag(aag + aq) + 1
JTAT =1, +
2
a7y A14Q24 a14Q34 a14(a44 + Cl24)
2
a14G24 Aoy (24034 Q24 ((144 + (124)

The (4,2)-entry of wyJ L A'Jw; ! is af , and hence Proposition implies
2a1 4R C e(weJ ' A Jwy ', $,8) = e(A',¢,8) = £(A, ¢,16).

and hence
2ai‘,4R + 2a§74R Ce(A, 9,32)

holds.
Further, the (4, 2)-entry of A’ is ay4(a4s + a24) — 1 and hence Proposition implies

2(asa(ass + ass) — 1)*R C (A, $,8) = £(A, ¢, 16).
Summarizing, we obtain
2(ay 4, 3.4, (aaa(aas + azs) — 1)*) C e(A, 6,3 % 16) = (A, ¢,48).
Note, that the fourth column of J~1AJ is
(—a32, —Q42, 12, a22)T~
Thus one obtains from equation that
L(J7'AJ) = 2a1,R C e(J1AJ, $,16) = (A, ¢, 16).
Next, consider

T .= J_I(A, Iy +en— 64,3>J € BA(Q)

and use equation (4.1]) to see:

L(T) = 2t3,R C (T, $,16) C (A, ¢,32).
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To summarize, we obtain for
(2 2 2 2 4 4 2 4 44
I(A) = (a4,27 Q31,013,245 A1 4,43 4, (aaa(aas + agg) — 1) 1.2, 2f34)

that 27(A) C (A, 9,32 + 48 + 16 + 32) = (A, ¢,128) holds for all ¢ € C5 long. So
according to Lemma [3.4.2)2), one has 2I(A) C (A, ¢,384) for all ¢ € C5. Remember
that [(A) is the ideal in R defined as (a;j, a; — a;;|1 <@ # j <4). We claim further that
I(A) C \/I(A) holds, which if true implies TI(I(A)) C TI({A}) and finishes the proof. To
this end, it suffices to show that each maximal m containing I(A) must also contain [(A).
So let m be a maximal ideal containing I(A). Then clearly ay 9, a3 1, 13, a2.4, @14, 034, G12

as well as t34 and agq(ags + agg) — 1 are all elements of m. Summarizing, we obtain

a1 0 0 0

ay; 0 | aq3 Guq

However, A is an element of Sp,(R) and thus as, ass, a41 and a3 must also be elements

of m. Thus A is congruent to a diagonal matrix modulo m. For the same reason,
ain +m = (ass + m)_1 and agy +m = (g + m)_l

must hold in the ring R/m. Let 7, : Sp,(R) — Sp,(R/m) be the reduction homomorphism
induced by the quotient map R — R/m and set u := a;; +m and v := ags +m. Then we

obtain:
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7Tm<T) = Jfl(ﬂ'm(A), I4 + e19 — 64,3)J
= J_l (]4 + 7Tm<A)(612 — 6473)7Tm(14_1>) . (I4 — €12 + 6473)J

u 0
0
) 0 v ? )
= J I, + (612 — 64’3)7Tm(A7 ) . (I4 — €13 + 64’3)J
u b0
0z 0 ot
w0
0 ot 02
= J N I+ (uepy — v teys) “(Iy —e1a+es3))
U
0
2 0 v

J_l(f4 + UU_1(612 — 643)) . <I4 — €19 + 64,3)J
= J_l(]4 + (U?}_l — 1)(612 — 643))J = ]4 + (UU_I — 1)(634 — 621).

1

But this implies that ¢34 + m agrees with uv™" — 1 in R/m. But ¢34 is an element of

m and hence

a1 +M=uU=v =ag +m

as well as
1

asz +m=u =t =aq tMm
follows. Further, a4y(aqq + ao4) — 1 and agy are both elements of m and hence

ajy—1=(au—1) (au+1)

must also be an element of m. But then either a4y — 1 or a4y + 1 must be an element of

m. Hence ayy + m agrees with either 1 +m or —1 + m and thus
ag +m = (agg +m)~"
holds in R/m. However, recall that (a4 +m)~! = asy +m and hence we obtain
an+m=ayp+m=(ay+m) " =ay+m=az+m

and consequently 7,,(A) is a scalar matrix and so [(A) C m holds, which finishes the

proof. O]
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4.3 Bruhat decomposition for principal ideal domains

In this section, we will describe another method to provide the values L(®) for Chevalley
groups G(®, R) defined over principal ideal domains using a variant of the Bruhat decom-
position. It yields noticeably worse bounds than the one for Sp,, (R) in this thesis and
the one for SL,(R) in [24]. However, it has the advantage of being more conceptual and
so it is easier to apply it to the exceptional root systems. First recall the word norm [g

on groups:

Definition 4.3.1. Let G be a group and S C G be given with S = S~! a generating set
of G. Then define the function lg : G — Ny by lg(1) := 0 and by

ls(z) :=min{n € N|3s1,...,5, € S:x =51---5,}

for z # 1.
Next, we need the following definition:

Definition 4.3.2. Let G be a group and S C G be given with S = S~! a generating set
of G. Further let w = s1--- s, be given with all s; € S.

1. The tuple (or string) (si,...,s,) € S™ is called an expression for w in terms of
S of length n. If n = lg(w) holds, then the tuple (s1,...,s,) is called a minimal

expression for w (with respect to S).

2. Let a sequence of integers 1 < iy < 1y < --- < i < n be given. Then

((Siu il)’ (Siw iQ) KR (Sika Zk))
is called a subexpression of (si1,...,s,).

3. An element w’ € G is called a subword of (s1, ... s,) if there is a sequence of integers
and lg(w') = k. Further, we

denote the set of subwords of (si,...,s,) by S(s1,...,5n).

1 <idy <y <--- < i <nsuch that w' = s, -5,

Remark 4.3.3.

1. We will usually omit writing down the positions when denoting subexpressions

to simplify notations. So for example, we will write (s;,,s;,...,5;, ) instead of
((Silu il)a (8i27 22) DR (S’ik> lk))
2. Theset S(sy, ..., s,) depends on the string (si,...,s,) and not on the group element

w = $p - S, represented by the string. Yet S(si,...,s,) is a subset of G itself and

not of the set S<*°° of strings in S.
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If G is the Weyl group W (®) of an irreducible root system, then the generating set S
is usually chosen as the set F' = {wq,, . .., Wy, } of fundamental reflections associated to a
system of positive, simple roots IT = {ay, ..., a,}. However, according to [41, Chapter 8,
p. 74, Lemma 53|, if (wq, ... ,wajk) is a minimal expression with respect to F' for an
element w € W(®), then the set S(wa,, ;. .., w,,, ) is actually independent of the minimal
expression (wajl, e ’w%k) and only depends on the element w itself. Consequently, we
will write S(w) in this case.

Next, for & an irreducible root system, we describe certain subgroups of G(®, R)
needed for the next proposition.

A principal ideal domain is an integral domain by definition and let @) be the field
of fractions of R. Then according to [41, Chapter 3, p. 31, Corollary 6], for « € ® there
exists a group homomorphism v, : SLy(Q) — G(®, Q) uniquely determined through

Va(lz + Te12) = £0(7) and o (ly + Teg1) = €_o(T)

for x € Q. Note that SLy(R) is a subgroup of SLy(Q) and define the subgroup G, (R) of
G(P?,Q) as G4(R) := ¥o(SLa(R)). However the group G,(R) is actually a subgroup of
G(®, R) according to |41, Chapter 8, p. 67, Lemma 48].

Further recall the Weyl group W (®) from Appendix [A|and the fact that according to
Remark each element w of W (®) has an associated element w of G(®, R). We can

state the following proposition now:

Proposition 4.3.4. [/1, Chapter 8, p. 68, Corollary 1] Let R a principal ideal domain
with fraction field Q, ® an irreducible root system of rank at least 2, F' = {wq,, ..., Wa, }
the set of fundamental reflections associated with the system of positive, simple roots

II={,...,a.} of & and W(®) the corresponding Weyl group be given.

1. Then for each oy € 11, there is a subset Y,, C Go,(R) such that
Goi(R) — {ea;(®)ha;(t)] t € R*,x € R} = {€4,(2)ha,(t)| t € R*,x € R} - Y,,

holds with uniqueness of decomposition into factors on the right.

2. Further, let w € W(®) and j1,...,5k € {1,...,u} be given with k = lp(w) and
o Way, - Then (B(QuwB(Q))NG(®, R) = B(R) Yy, -+ Ya, holds for the

Y., from the first part of the proposition, with uniqueness of decomposilion on the

W = Wy

right.
Note, further:

Lemma 4.3.5. [/1, Chapter 8, p. 65, Lemma 46] Let ® an irreducible root system of

rank at least 2, F = {wq,, ..., Wa, } the set of fundamental reflections associated with the
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system of positive, simple roots {ay,...,a,} of ®, W(®) the corresponding Weyl group
and wy the longest word of W(®) with respect to lp. Then S(wy) = W (P) holds.

Also note:

Definition 4.3.6. Let ® an irreducible root system, Il = {ay, ..., a,} a system of positive
simple roots, xy € ® the positive root of highest weight with respect to Il and ¢ € ¢ a
positive root be given. Then let T'(¢)) be defined as follows

T() ={¢+> kig|Vie {1,...,u} : k >0} N .
=1

Remark 4.3.7. Note that, T'(¢)) is an ideal in the set of positive roots of ® : If @ =
Y+ >0 ki € T(y) is given and § = > m;a; is another positive root such that
a + [ is also a root, then obviously a + = ¢ + > ", (k; + m;)a; is also an element of

T'(+). Hence according to Proposition 2.2.13 the set [ ]y, €4(R) is a normal subgroup
of BT(®, R) for R a commutative ring with 1.

Next, note the following:

Lemma 4.3.8. Let R a principal ideal domain with fraction field (Q, ® an irreducible
root system and F' = {wa,, ..., Wy, } the set of fundamental reflections associated with the
system of positive, simple roots {cn, ..., .} of ® be given. Further, let w € W(®) and
w € S(w) be given. Assume further that for x the positive root of highest weight in ®,
the root 1 == w(x) is a positive root. Then for A € (B(®,Q)w'B(®,Q)) N G(P, R), the
commutator (A, e,(1)) is an element of [],cp(y) cu(R).

Proof. We will prove this lemma in three steps. First, we will assume that R is an
algebraically closed field K and w' = w. Second, we assume w’' € S(w) is arbitrary
and show the lemma in this case and last, we deduce the claim in the case that R is a
principal ideal domain. For the first step, note that according to [41. Chapter 3, p. 26,
Theorem 4’], we may assume that there are b € B(®, K) and an element u € U (FEg, K)
such that wuw™' is an element of U~ (FEg, K) and A = bwu. Then

(A,ex (1)) = (bwu,ey(1)) = (u,ex (1)) - (bw, e, (1)) = 1" - (w, e, (1))" -+ (b, ex(1))
= (w0 (EDex(=1))" - (b,64(1)) = ey (£1)’ey (=1))" - (b, £ (1))

But according to Remark the subgroup HueT(w) e,(K) is normalized by B(®, K).
Hence ¢ € T'(¢) implies that e,(+1)" € [1,cr() €u(K). On the other hand, {x} is an
ideal in the set of positive roots of ® and so &,(—1))? - (b,,(1)) is an element of &, (K)
according to Proposition 2.2.13] Summarizing, the entire commutator (A,e,(1)) is an
element of the subgroup || cp() €ux(&). This finishes the first step.
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For the second step, let w’ € S(w) be given and let X,, denote the Zariski-closure of
B(®, K)wB(®, K) in G(®, K). Then the map

m: Xy — G(®,K), B (B,e,(1))

is a morphism of algebraic varieties. Furthermore, B(®, K)wB(®, K) maps into the set
[1,.er(s)eu(K) under m according to the first step. However, the set [ cp, €u(K) is
Zariski-closed and hence the Zariski-closure X, of B(®, K)wB(®, K) must also map into
[1,.er(p) cu(K). But [41l Chapter 8, p. 74, Theorem 23| implies that B(®, K)w'B(®, K)
is a subset of X, and hence m(B(®, K)w'B(®, K)) C [],,cr(y) €x(K) holds. This finishes
the second step.

For the third step, note first that if R is a principal ideal domain, () its fraction field
and K the algebraic closure of @, then the second step implies for A € G(®, R) that
(A,ex(1)) is an element of J[ r
G(®, Q) and the group operations in G(®, K) are defined over its prime field Kj according
to [41, Chapter 5, p. 39, Existence Theorem|. Thus (A,&,(1)) is actually an element of

[1,.er(s) €x(Q) and thus Proposition [2.2.13| implies that (A, e, (1)) is actually an element
of I],.er(y) €u(RR). This finishes the proof. O

() En(K). However, both £,(1) and A are elements of

Further, we need the following technical Lemma occasionally:

Lemma 4.3.9. Let R be a principal ideal domain and let ® be an irreducible root system
and ¢1,p2 € O with o1 + ¢o # 0. Further let t € R and A € Gy, (R) be given and set

Y(¢1,02) = {kor + o] ke NJI € Z} N .
1. If both ¢1 + P2 and @1 — P are not elements of ®, then
(A, €0, (1) =1

follows.

2. If o1 + &9 or ¢1 — ¢ is an element of @, then

(Aea)e I eu®.

PEY (¢1,02)

3. If ® = Ay with positive simple roots ¢1, ¢a,
a b
A —
Ve (c d>
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then
(€¢1 (t)7 A) =E&p (t(l - d))€¢1+¢2 <_tb)
and

(€¢1+¢2 (t)7 A) = Ep1+¢2 (t(l - CI,))€¢1 (IfC).

Proof. Let @ be the field of fractions of R. In this proof, we consider G(®, R) as a
subgroup of G(®, Q).

If neither ¢ + @2 nor ¢ — ¢, are elements of @, then 4, (t) commutes with all elements
in €4,(Q) and in £_,,(Q). However, we can find a,b, ¢, d € R such that

b
A:w@ <Z d>.

We assume first that ¢ # 0 and so we can write A in G(®, Q) as
A=cg(c7Ha—1)) e-g,(0) €y (c™H(d = 1)).

But e4,(t) commutes with all these factors of A in G(®, ) and hence the first claim of
the lemma holds in case of ¢ # 0. The cases of b # 0 and both b and ¢ equal to 0 are
dealt with similarly. This yields the first claim of the lemma. The second claim follows
by a similar density argument as Lemma The third claim of the lemma can simply
be checked by matrix calculation in SL3(R). O

4.4 Explicit bounds for root elements of Eg(R)

Choose a system of positive simple roots I = {«a,,7,0,¢,¢} C Eg such that their

corresponding Dynkin-diagram looks as follows

We will show the following:

Proposition 4.4.1. Let R be a principal ideal domain and A € FEg(R). Then there is an
ideal In(A) in R with
Io(A) C (A, 10-60%")

such that for each mazimal ideal m with Io(A) C m the following equation holds

T (A, €aropisytosteras(1))) = 1.
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We will prove this proposition using Lemma As a first step, note:

Lemma 4.4.2. The longest element in the Weyl-group W (Eg) with respect to the funda-

mental reflections F = {w,, wg, w,, ws, We, Wy} 1S
_ 6
wo = (WpwaWsWHWaw,)

and this equation gives a minimal expression for wq in terms of F.

Proof. According to [22, Exerc. 3.19], the longest element wg in W (Ej) is equal to w"(Fs)/2
for w = wywpwsw wawe, if h(Es) = ord(w) is even. Thus to prove the lemma, it
suffices to show that h(Eg) = 12 and that N(Es) := [p(wy) = 36. But according to
[41, Appendix, p. 151, (2)Corollary|, the length [p(w’) of an element w’ € W(Es) is
the number of positive roots 1 € Ey with w'(¢)) a negative root and according to [41]
Appendix, p. 151, (24)Theorem]|, the longest element wy of W(Es) maps each root in
E{ to a negative root. This implies that N(FEg) is the total number of positive roots in
FEg, which is 36 as can be seen from [I8 Appendix, Table B, p. 528|. Further, one has
the equation 72 = 2N (Es) = h(FEg)rank(Es) = 6h(FEs) according to [22, 3.18]. But this
implies h(Es) = 12 and finishes the proof. O

Lemma 4.4.3. The sequences
1. S1 1= (wocaw67w¢aw57w57w’yawa7w€7wqﬁawﬁ)w(Saw’yawa7w67w¢7wﬁyw57w’yawa7w6) and
2. Sg 1= (Ws, W, W, We, Wey, Wry, W5, Wg, Wey, We, Wey, Wey, W, W3, Wep)

of fundamental reflections in W (Es) give minimal expressions with respect to the funda-

mental reflections for the corresponding Weyl-group elements wy, ws € W (Es) and
wi(x) = w2(x) =7 and T(7) = E§ —{a,B,0,¢,¢,a+ 3,0 +¢}.

The proof of this lemma can be found in Appendix [C] The last preparatory lemma is
the following:

Lemma 4.4.4. Let R be a commutative ring with 1 and ® a simply-laced irreducible root
system of rank at least 2 and for each ¢ € O let t, € R be given. Further for each
k €N, let v, be the number of roots of weight k in ®* and let | be the weight of the root of
highest weight in ®*. Then define the sequence (x)r=1,...1 of integers by reverse recursion

as follows:
r =2, = (20 g k1 + 20k + 1) Ty
Further assume that ®% is ordered in some fized way by decreasing weight of roots and set

U = H 8¢(t¢) S U+<CI>,R)

pED+
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Then
(tolp € @F) C e(u, 21)

holds.

Proof. We will show by backwards induction on k € {1,...,l}, that the following claim
holds:
Claim 4.4.4.1. Let

U = H €¢(t¢) S U+((I>,R)

ped+

be given such that t, = 0 holds for all ¢ € @t with wt(¢) < k. Then
(tsl¢ € ©T) C e(u, z3)

holds.

Clearly, this claim is equivalent to the claim of the lemma. First, for the case £k =1
let x € ® be the root of positive highest weight in ®. Then u = ¢, (¢,)) holds and thus the
claim follows from the non B,-case of the proof of Lemma [3.3.3

So assume now that & > 1 is smaller than [. For each root ¢ € ®* with ty # 0 and
the weight of ¢ being k, there is a positive, simple root «, such that oy + ¢ is also a root
in ®. As k is the smallest possible weight for the roots in u, we can reorder the terms of

u in such a way that
U= 11 ep(ty) | eolty) = u' - e4(ty).
Yedt—{¢}wt(y)>k
holds for other t,, € R for ¢ € " — {¢} with wt(¢)) > k. Then, we obtain
(0, (1)) ~ (£4(tp)s €0, (1)) - (Ea, (1), 0/7H)
= Etay(ts) - (Ea, (1), u™") = uy.

First, note that the weight of all roots appearing in the root elements in u4 can be assumed
to be greater or equal to k+1 and that we may assume that none of the roots appearing in
the root elements in (g4, (1), u'~") are ¢+ ay. Thus by applying the induction hypotheses,

we obtain in particular that

(ty) C e(ug, Tpy1) C e(u, 22541).

This implies further that e4(¢4) is an element of B, (2x4+1). As we can do this for all roots

¢ of weight k appearing in u, we obtain that after multiplication from the right with the
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elements €,(t,) in appropriate order that

= I eulte)

YeDH wt(h)>k—+1

is an element of B, (2v,xr1 + 1). But then we can also apply the induction hypothesis to

u” and thus we obtain that
(tyltp € T wt(y) > k+1) Ce(u”, x111) C e(u, Quppyr + 1)Tpi).

Thus in combination with the fact that (t,) C e(u, 2x+1) holds for all roots ¢ € ®F of

weight &, we obtain
(ty|g € @) C e(u, Qukagsr + 20k + 1)Tpiq)

However, the integer xy is defined as x; = (2upxri1 + 20x + 1)z so this finishes the
induction step and the proof. O

Next, observe that:

Lemma 4.4.5. Let R be a commutative ring with 1 and let

U = H €¢(t¢) S U+(E6,R).

bEES
be given. Then (ty|¢ € EF) C e(u,60*") holds.

Proof. According to Lemma it suffices to show x; < 602" to show the claim of the
lemma. To this end, observe that [ = 11 and v, < 6 holds for all £ € N for ® = Fj, as
can be seen for example from the Hasse-diagram of Fjg in the proof of Lemma in
Appendix [C} But the recursion xy = (2uxg11 + 20 + 1)x41 implies then further that

T = (Zkak—I—l + 2Uk + 1)$k+1 S 5UkZL’k+1 cTgt1 = 3O{L‘Z+1.

Then considering that z; = 2, one can show by induction that z; < 302 1. 227" —

602" and hence z; < 602", O
We will prove Proposition now:

Proof. Let @ be the fraction field of R. For ¢ a positive, simple root in Eg, set Ty, (R) =
Yy U {1} for the Y, as in Proposition Then according to Lemma [£.4.2] Proposi-
tion [4.3.4) and Lemma |4.3.5) there are elements ij) € Ty(R) for positive simple root
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€ FEgandi=1,...,6 as well as b € B™(Eg, R) such that

A=b- JIXPXPxPxOXxO XD

=1

holds. Setting further ngi) :

implies

(X%(Z))*1 for ¢ positive and simple and ¢ = 1,...,6, this

(A, catoprayrasteras(l))
6

= (b H X(E)Z)X,g)ngZ)Xs)Xg)Xe(Z)a 5a+25+37+26+5+2¢(1))

(Casaprarasresaoll) bHX IXPXPXDXPXD) - XPXD X P XO))

[0 € ¥
DI XSXPXPXDXOXD, caraprsnrasseraa(l))
3 . . .
((Y(3)Y;S(3)Yé3)y¢(3) H YE(4_Z)YCS4_1)Y’)/(4_Z)3/6(4_1)YB(4_Z)Y¢54_1))b_l7 5a+26+3v+25+e+2¢(1))

The first part of Lemma [4.4.3| states that
S1 = (wom We, Wy, WG, W, Wy, Way We, Wep, W, We, Wy Wey; We, Wep, W, Wey Weyy Weys we)

is a minimal expression for its corresponding Weyl-group element w;. But note that, all

Xz(;) are chosen as elements of T}, (R). So according to Proposition 4.3.4] the element

« €

6
HXz)Xl)X ()X(i)X(i)
1=4

is an element of (B(®, Q)w'B(®,Q))NG(P, R) for some w’ € S(wy). According to the first
part of Lemma4.4.3] the Weyl-group element w; given by the sequence s; satisfies w;(x) =
vand T(y) = By —{a,B,6,¢,¢,a+ 3,0 +€} = S. Thus as x = a+ 2+ 3y +20 + €+ 2¢
is the positive root of highest weight in Fg, by Lemma [4.3.8] the commutator

6
By = (X®Xx® HXéZ)XéZ)Xa(Z)Xy)XC(f)X@7€a+2ﬁ+3w+2é+e+2¢(1))
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is an element of [[,c5ey(R). But reordering the terms, we may assume that

By € e,(R) H ep(R).
YesS—{v}

Next, consider the following chain of equations

3
((y(3)y H y -y (4= Y(4 )}/(5(4_Z)Yﬁ(4_l)Y¢E4_Z)) b7 fatosrsrrasterao(1))

€

03@

D+ (3)x (3 i —; —i) (A=) (A=) - (4—i — 3
= (P Ty oy oy ey Oy v ) 0 caasis o peran(1))
i=2
. (Y»y(3)7 Eat28+3y+25+e+26(1))
3
: —i —i —i —i —i —i _ (3)
= (Y YO Ty ey ey VY ) b s asieras(1))

1=2

Then similarly to the previous discussion, one obtains from Lemma [4.4.3| and Proposi-

tion [4.3.4 that

3

(}/(3(3)YB(3)Y¢(3) H }/;(471‘)3/(1(44)}/7(44)}/;5(471')}/5(471‘)}/9{)(4%)) bt
i=2

is an element of (B(®, Q)w'B(®,Q)) N G(P, R) for some
w' € S(w57wﬂaw(baw67wa7w77w57wﬂ)w¢aweawa7w’y7w5awﬁyw¢> = S<82)‘

According to the second part of Lemma [4.4.3] the Weyl-group element wy given by the
sequence so satisfies wq(y) = 7. Thus by Lemma the commutator

B, == ((vVyy? HY<4 YAy Gy Sy YY) b gy aasteras(1))

is an element of [],.qey(R). But then reordering the terms yields

By € e,(R) H ep(R).
ypesS—{~}

Hence, we obtain

VAL 3) 3)
(B )7 e I R e (R)" (4.2)
YesS—{}

But for each ¢ € S — {7} one of three cases occurs:

1. Neither ¥ 4+ v nor ¥ — v are elements of Eg. But as ¢ # ~, Lemma [4.3.9] implies
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cu(R)7 = 2y(R).

2. The term v + v is an element of Eg. Then Lemma implies

eo(R)7 = ey(R)eysn(R).

3. The term ¥ — ~v is an element of Eg. Then Lemma implies

eo(R) = ey(R)zy— (R).

Note, that if ¢» € S — {7} and ¥ + v or b — 7 is an element of Ej, then this implies that

either ¢+’Y € (S_{ﬁy}) or w_7 € (S_{7}>U{a+ﬁaﬂ757 ¢75+6} = Eg_{a7fya 6} = 5"
So in any case, one obtains fixing some order of the elements in S’ that

%(R)Yw(s) € H e (R).

ves’

But S is a set of positive roots closed under addition and hence according to Proposi-
tion [2.2.13] the set [], .o €,(R) is a subgroup. Hence together with (4.2]), we obtain

B ) e ([ co®e(m) (4.3)
Ppes’

Remembering that

Biee(R) [] eu(R)
veS—{r}

and that S — {7} is a subset of ', we obtain that

By € e,(R) [] eu(R). (4.4)
Ppes’

Hence, (4.3)) and (4.4) together imply

(A, eat28+3v+20+e+26(1)) ~ By - (B;/V(S))_l
€ (5,(R) T 2o(R) - (I] cul®)e, (R
Ppes’! Pes’!

So conjugating with an element of e, (R) yields that (A, at25437+20+e+26(1)) is conjugate

to an element B of

(I] eu(R)) - G (R).

pes’

We assume that the set of roots S’ is ordered by decreasing weight; the order of root

elements associated to roots of the same weight should be fixed, but does not matter. So,
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we can pick elements ¢, € R for each ¢ € 5" and a Z, € G,(R) with

B=(]] eu(ts)) - Z,.

pes’

Further, choose a, b, c,d € R such that

b
= (Z d)

Next, we will construct various ideals using Lemma [4.4.5] whose sum has the property
desired of Iy(A) in the proposition. First, pick a positive, simple root 6 in Eg, which is

not v and consider the following commutator:

(B,2o(1)) ~ (Zy,e0(1)) - (e0(1), (T T 2w tu)) ™)

pes’
According to LLemma [4.3.9] one obtains that
(Z,€0(1))

is an element of U™ (Eg, R). But (4(1), ([T e €v(ty)) ") is clearly an element of U* (Eg, R)
as well. Thus the commutator (B,ey(1)) is conjugate to an element uy of the subgroup
U™ (Es, R). Hence using Lemma we can find an ideal

Iy(A) C e(ug,60%") C (A, 4-602")
such that m7,(4)(ug) = 1. Next, consider the commutator

(B y15(1)) ~ (Zys5(1)) - (2y4s(1), (] [ 20 (t)) ™)

pes’

According to Lemma [4.3.9, one obtains that
(Zy,8445(1)) = ey1s(E(a — 1))es(£c)

and this is clearly an element of Ut (Fg, R). But according to Proposition [2.2.13] the
commutator (e,45(1), ([ cq €v(ty))™") is an element of

I =0

YEES wt(1h)>3
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So
(Zyrevas(1) - (£440(1), ([ ] €0t ™)

Ppes’

is an element of U™ (Eg, R) and its terms can be ordered in such a way that the only root
elements €, (y,) with wt(¢)) < 2 appearing in it, are e,,5(+(a — 1)) and e5(£c). Thus
the commutator (B, e,45(1)) is conjugate to an element w..s of the subgroup U™ (Eg, R).

Hence using Lemma we can find an ideal
L 5(A) C e(uyps,60%") C e(A,4-60°")

such that 77, (a)(u,45) = 1 and additionally a — 1, ¢ are elements of I,,5(A) as well.

Similarly, one can find an ideal

Ls(A) Ce(A,4-602")

such that 77, (a)(uy4¢) = 1 for an element u, 4 conjugate to the commutator (B, ,44(1)).

Further, we may reorder the terms in B in such a way that

B=( ][] euty) eslty)- 2,

pes'—{¢}

holds for other ¢, € R for ¢ € S’ — {¢}. Then for z € R, consider the commutator

(B, Cataprartzsrers(T) = (Eg(ts) - Zo, Caraprayrasrero(@)) Hves'—tor v tu))

- (( H &p(tiﬁ)),€a+2ﬁ+3v+25+e+¢($))
peS’'—{¢}

= (e4(ty) - Z, 5a+26+3v+2é+e+¢(x))(nwesl_wEw%)) -1

~ (e¢(ts) - Zy, €arapisvt2sters(T))

= (Zw5a+26+37+26+e+¢(93))ad’(td’) : (%(%)»5a+2,8+37+26+e+¢(93))
But note that according to Lemma [4.3.9] we obtain
(Zys ataprayiasters(®))7) = (Cayaprsyrastero(F2(a = 1))earopioyrasrero(tue)) )
However, we already know that
z(a—1),zce l,45(A) Ce(A4- 60%")
and thus (Z,, £a12543y1261cr0(2))") is an element of B4(8-60>"). Hence

(5¢>(t¢)> €a+25+37+26+e+¢(x)) = 5a+25+3v+26+e+2¢(ixt¢)
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and so in particular e4(xty) are elements of B,(4 + 8 - 60°™).

In particular, this implies that

B/ = ( H €w¢(¢)(:|:t¢)) . w(z)Zﬂ/w;l
peS'—{4}

=( JI cwow(Ety) - Zyso
Ypes’'—{¢}

is an element of B4(6 + 8- 60%"") for an appropriately chosen Z,,4 € G, 4(R). Note that
none of the roots wy(1)) are negative for ¢ € 5" — {@}. Thus ([[ eq 14y Ewy)(Ety)) s
in fact an element of U™ (Eg, R). Hence according to Propositon [2.2.13] the commutator

(oD T cwetor(Et) ™)

pes’'—{¢}

is an element of the subgroup [[,co+ w2 €y(12) of UT(P, R). So in particular,

Wy 545(1)7( H 5w¢(¢)(it2b))il w';l
pes’'—{¢}

is also an element of U™ (Es, R). Then Lemma implies that there are u,v € R with

(B',e6(1)) ~ (Zyssreo(1) - (261 [T ewner(E))
ypes'—{¢}

= o)z (0) - (1), ( TT  cwerm(E))™)

pes' —{¢}

~ wigg(w)e_y (v) - (es(1), ([  wpt(Ety) st
vesS' —{¢}

= 5’Y+¢(u)€'y(v) T Wy 5¢>(1)7( H €w¢(¢)(it2ﬁ))_1 w,;l = B
Yes'—{¢}

So summarizing, the term B” is an element of U™ (FEg, R) and hence according to Lemma m,

we can find an ideal
J(A) C e(B",60%"") C (A, (6 +8-60%"") - 60*) C e(A,9-60°")
such that 7;4)((B’,e4(1))) = 1. Next, we define the ideal

Io(A) := 1a(A) + Ig(A) + I5(A) + L(A) + I4(A) + Ly15(A) + Lo (A) + J(A)
Ce(A,5-4-60°" +2-4-60*" +9-60%") C 2(4,10-60°").
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To finish the proof, we now have to show that [4(A) has the desired property, that is for

any maximal ideal m containing /y(A), one has

Wm(Aa €a+2,3+3'y+26+6+2¢(1)) =1

or equivalently that B := m,,(B) = 1. To this end, consider the field K := R/m. First,

we will show that m,,(Z,) is trivial. Recall that:

b
Py = (Z d)

and observe that according to Lemma [4.3.9] one has

(B,es(1) = (] ] 2u(te)) - Zy.25(1))

pes’

~ (Zy,e5(1)) - (D), ([T ewlta)™)

pes’

= g (£D)za(2(d — 1)) - (e5(1), (T olte)) ™)

Ppes’
~ep(E(d = 1)) - (25(1), (] ] 20 () epsq (£0)

pes’

holds. Consider the set

T .= S,_{ﬁ_}‘V}:E(—j’—_{aa’Yagﬁ—'_’y}

of roots. Observe, that if ¢; is an element of T and )5 is an element of S’ such that
Y1 + 19 is an element of Fjg, then 1)y + 15 cannot be S + v, because if it were than either
1 or 1y would have to be «y, which contradicts 11, 15 being elements of S’. Hence T is an
ideal in the set S” and hence according to Proposition the subgroup [[ oy (R) is
a normal subgroup of [[ g €y (R). Thus as £5(1) is an element of [ ], . €4 (R), we obtain
that the commutator (e5(1), ([[,es co(ty))") is an element of the subgroup

[[(®

YpeT

of U*(®, R) as well. But consequently, the factors of e5(+(d—1))(es(1), ([Types ew(te)) )
can be rearranged in such a way that none of the roots appearing are 5+ . But remember
that

ep(E(d = 1))(ep(D), ([T cvtu))™epsn(£0) (4.5)

Ppes’
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is conjugate to (B,e3(1)) and hence as m contains Iz(A), the map ,, must map

ea(E(d—D)(es(1), (] eulte)) ™ epsn (£0)

Ppes’

to the identity. This then implies that ,,(e34,(£b)) must be trivial as well and hence b
must be an element of m.

But as both e5(1) and ([],cq €y (ty))~" are elements of U*(Es, R), the commutator
(e5(1), (ITypes €v(ty)) ") must also be an element, of the subgroup

I =®

YEBT wt(1)>2

according to [41, Chapter 3, p. 22, Corollary 4|. But consequently, the factors of

(s, (] T evtu)) Nepn(zb) € I eu(®)

pes’ YEES ,wi(1)>2

can be rearranged such that none of the roots appearing are § and thus one obtains, as
T, maps the term in to 1, that d — 1 must be an element of m as well.

We have seen before already, that the ideal I, 5(A) contains a — 1 and d and hence to
summarize m,,(Z,) = 1 must hold. Phrased differently, we obtain setting ¢, := t,+m € K
for ¢ € S’ that

B= ] et
Pes’
Next, we show by induction on k € Ny that ¢, = 0 holds for all ) € S" with wt(y) < k.
This implies B = 1, because there is a maximal weight roots can have. So assume that
B is given such that £, = 0 holds for all ¥ € S” with wt(¢)) < k. We have to show
that B further has the property that £, = 0 holds for all ¢ € S’ with wt(¢)) = k. To
this end observe that for each root § € S’ with weight k such that € is not the root of
highest weight in FJ, there must be a simple root 6y such that 6 + 6y is a root in Fy .
We distinguish two cases. First, let us assume that 6y can be chosen to not be +. Then

reordering the terms in B, we can assume that

B = 11 ep(ty) | - olts)

YeS {0} w(1) >k

for certain other £, € K. But we know that B commutes with g,(1) as Iy,(A) is a subset
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of m. Hence

1= (B, eg,(1)) ~ ( 11 eu(ty) | - €olto), €o,(1))
pes’ —{0},wt(¥)=k

= (0(t0), €0, (1)) - (€0, (1), 11 eplty) | )

Ypes —{0},wt(y) 2k

= co.40(f0) - (£0,(1), I =)

YeS' —{0},wt(¢) 2k

This is an element of Ut (®, K) again. But similar to how we showed that 7,,,(Z,) = 1,
one can also show using Proposition [2.2.13| that the factors of

-1

(€0, (1), 11 eplty) | )

YeS' —{0},wt(¢) 2k

can be rearranged as to not involve the root 6 + 6, and hence one obtains that ¢y = 0
holds. To summarize, if there is a positive, simple root 6y # v such that 6 + 6 is a root,
then tg = 0 holds. This settles the first case. The second case is that such a simple root
cannot be found. But looking again at the Hasse-diagram from the proof of Lemma 4.4.3

in Appendix [C] the only positive roots 6 in Eg of this form are the roots
p,a+pBo+ea+f+y+dtetd,a+20+27+20+€+ ¢

and the root of highest weight x. Disregarding x for the moment, all the other ones of
those roots 6, have one of two properties: either § +~ + & or 8 + v + ¢ is a root in Ey .
But we know by construction of Iy(A), that B commutes with both £,,5(1) and e,,4(1).

Further, we can reorder the terms of B again such that

B = 11 ep(ty) | - ollo)

YeS {0} w(¥) >k

and hence using Proposition [2.2.13| as before we obtain #, = 0 using either that B cen-
tralizes €,45(1) or centralizes £,44(1) depending on the 6 in question. So proceeding by

induction, we can assume finally that

m(B) = B = &,(1,).
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Recall the aforementioned element

B=( [ eww(Et) wZywy!
ves' {4}

=( JI cwer(Et0) - Zovg
Yes'—{¢}

and observe that ¢, = 0 for all ¢ # x and 7,,(Z,) = 1, implies

Tm(B) =[] fwow (Eto)) - wsZyw, ")
Ypes'—{¢}

=( I cwow(Et) ws- 1wy’
Yes’'—{¢}

- 5W¢(X)(ifx)) = 5a+25+3'y+26+5+¢(itx).

However, the ideal I;(A) contains J(A) and hence 7,,(B’) commutes with £,(1) by con-
struction of J(A). Thus

L= (m(B),26(1)) = (Carassansassero(£h). 26(1) = ey(£,)

holds and consequently ¢, = 0 follows. So finally, we are done with the induction and the

proof of the lemma. O
This proposition implies:

Proposition 4.4.6. Let R be a principal ideal domain and A € Fg(R). Then there is an
ideal In(A) in R with
I(A) C £(A,120-60*")

such that V(I(A)) C TI({A}). Phrased differently, for R a principal ideal domain, one
can can pick L(Eg) in Theorem as L(Eg) =120 - 60%"".

Proof. To define the ideal I(A), note first that according to Proposition [A.0.8 for each
simple root § € Fg, positive and negative, there is an element w® € W (Es) such that

w® () = 6 holds for x the positive root of highest weight in Eg. Then consider the ideals

Iy (w(a)A(w(a))*l), o dy (w(d’)A(w(d’))*l) , Lo (w(*“)A(w(*a))*l) RN 1) (w(*‘z’)A(w(*‘ﬁ))*l)
C e(A,10-60%")

from Proposition and set

I(A) = > I (wPAw?P)™) C (4,120 60*").

€ FEg, simple
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Let m be a maximal ideal, that contains I(A) and define K := R/m. Further let
Tm ¢ E6(R) — Eg(K) be the reduction homomorphism and set A := m,,(A). We will prove
that A is a central element of E5(K). The key observation is that A commutes with all
elements 4(1) for 6 a simple root in Eg: To see this note first that w® A(w®)~! commutes
with £, (1), because m contains Iy (w® A(w®)~!) . But conjugating, this implies that A
commutes with

w@e, (1) (w®)™! = ) () (1) = €p(£1).

Observe next that K is a field. Thus using the Bruhat-decomposition of Fg(K) [41]
Chapter 3, p. 26, Theorem 4’|, there are w € W(Es), an element b € B(K) and an
element u € UT(Fg, K) such that wuw™! is an element of U~ (Es, K) and A = bwu. Let
us first assume that w # 1. Then according to [41, Appendix, p. 151, (2)Corollary|, there
must be a positive simple root # such that w(f) is a negative root. However A commutes

with 4(1) and hence

RS
™
>
—~
[a—
g
S
™
>
—~
—_
~—
S
L
™
>
—~
|
—_
~—
—~
™
>
—~
—

),07")
u,59(1 ) . 69(1)]w : [89(—1) : (59(1),()_1)}

But consider the first factor

[(u,€(1)) - £6(1)]"
= [ueg(1)u"ep(—1)ey(1)]
=u" - gp(1)"(u)" = uPey ) (£1) (u )"

w

and note that by assumption u" is an element of U~ (FEg, K) and hence the entire first
factor is an element of U~ (FEs, K). But the second factor

[ea(—1) - (ea(1),071)]

is an element of B(K) as all of its factors are. So

[(u, (1)) - €0 (1)]"” - [ea(—1) - (ea(1),b71)]

is the trivial element in U~ (Es, K) - B(K) and hence the uniqueness of the Big-cell-
decomposition [41, Chapter 5, p. 40, Theorem 7| implies

1= [(u,0(1)) - £4(1)] = [e6(—1) - (e0(1),67)] -
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But this implies

= b_lgg(—1>b ~ 89(—1)

and hence e¢(—1) is the trivial element, which is obviously impossible. This contradiction
yields w = 1 and hence A is an element of the upper Borel subgroup B*(Es, K). But
using the Bruhat-decomposition for the lower Borel-subgroup B~ (Fg, K), one can show

in the same fashion that A is also an element of B~(Es, K). However
B (Ee, K)NB™ (Eg, K) = {ha(sa)hs(55)hy(55)hs(85)he(5)hs(56)] Sas 55, 55, 56, 8¢, 59 € K—{0}}.

holds and so we can pick s,, sg, S5, Ss, Se, 56 € K — {0} with

A = ha(sa)hs(ss)hy(5y)hs(ss)he(se)ho(Ss)-

Next, observe that A commutes with 4(1) for all positive, simple roots #. Then using
induction on the height of a root § € EJ and the commutator formulas in Lemma [2.2.4]
one can show that A also commutes with €,49513,+251e126(1). But eat9543y1254cr26(1)

commutes with all factors in A except possibly h4(s,) and hence the following holds:

1= (A, eat2813y4204c120(1)) ~ (ho(56), Ear2praytasteras(l))
_ (a+20+37+20+e+26,6) _
= 5a+2,3+3'y+26+6+2¢(5¢ )

= Cat2p+3y+25rer20(Sp — 1)

But this implies that s, = 1. Further A commutes with £4(1). But all factors of A
commute with £4(1) except possibly h,(s,). This implies

1= (A,e5(1) = (hy(55),25(1)) = (87 — 1) = e4(s7" — 1).

But this in turn implies that s, = 1. But if both s4 and s, are 1, then observe that all

factors in

A= ha(sa)hs(sp)hs(ss)he(se)

commute with the root subgroups e4(K) and ¢_4(K) and so A centralizes those root
subgroups.

Next, observe that the only factors of A that might not commute with e, (K) are
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hs(sp) and hs(ss). This yields for x € K that

(A, &5(2)) = (hs(sp)hs(ss), &4 (7))
— E,Y(ZES?’&Sgﬁﬂ) _ 1)

=, (a(sytss — 1)

But observe that A commutes with £,(1) and hence setting z = 1, yields s;'ss = 1.
This yields (A,e,(z)) = 1 for all z € K. Hence A centralizes the root subgroup &, (K)
and similarly A centralizes the root subgroup e_,(K). But analyzing the commutators
(A, g9(x)) for 6 € {£a,+B,+0,+€e} and x € R in the same manner yields that A also
centralizes the root groups €y(K).

To summarize: For each simple root 6 € Ej the element A centralizes the correspond-

ing root subgroup e,(K). But the group Eg(K) is generated by
{eo(z)| © € K,0 € Eg simple}

according to [3, Corollary 2.4] and hence A is a central element of FEg(K). This finishes
the proof. n

4.5 Explicit bounds for root elements of G(R)

Remember that the positive roots in Gy are o, 3, a + 3, 2a + ,3a + 8 and 3a + 20 for
a, B simple, positive roots in Gy with « short, g long. Also note that the roots 3ac+ 3 and
[ span a root subsystem of G5 isomorphic to As. We will use the Bruhat decomposition
Proposition from Section [4.3] First, we need the longest element of the Weyl group:

Lemma 4.5.1. The longest element in the Weyl group W (Gs) with respect to the funda-

mental reflections F := {w,,wg} is (wawg)>.

Proof. As mentioned in the proof of Lemma [4.4.2] it suffices to show that all roots in
G5 get mapped by (w,wg)?® to negative roots and hence to show that (w,wgs)3(a) and

(wawg)?(B) are negative roots. But observe that

wawp(a) = wo(a+ B) =20+ f and wawp(B) = —we(B) = —(Ba+ 5).

This then implies

(wa03)%(0) = (105?20 + B) = waws(2 - (20 + §) — 30 — B)
=wawg(a+ ) =2a+ —3a—=—«
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and

(waws)*(B) = —(wawp)*(3a + B) = —waws(3 - (20 + ) — 3a — )
= —wews(3a+28) = —(3- (20 + B) —2- (3 — B)) = —f3
and finishes the proof. O

Next, we prove:

Proposition 4.5.2. Let R be a principal ideal domain and A € Go(R). Then there is an
ideal In(A) C g;(A,2343808) such that for each mazimal ideal m in R with Io(A) C m,
the equation ., ((A, 3a+25(1))) =1 holds.

The proof is very long, so we put parts of it in technical lemmas.

Lemma 4.5.3. Let R be a commutative ring with 1, A € Go(R) and let a,b € R be given
such that there i1s an M € N with

lea(£a)e20+5(Ea%)es045(2b) 4 < M.

Then
(21)) - 61<A, 18M)
holds.

Proof. First, observe for x € R that

Ba(2M) 3(ca(+a)e2015(£0° €304 5(£D), €204 5())
= (ea(Fa), €2045(2)) = €3045(E3az)

and hence (3a) C g/(A4,2M).
Second, observe for x € R that

Ba(2M) > (ca(£a)e2a+5(£a”)esa15(£D), €arp(2))

= (ca(£a)ezarp(£a®), cars(2))

~ (e20+6(£a%), atp(2)) - (€arp(), ca(£a))

= £30125(E£30°7)e00 1 5(£202) 304 5(£30%T)e30.125(F3az?)

= 53a+25(:l:3a x + 3ax? )53a+5(:|:3a T)e90+p(E2a)
But from (3a) C (A, 2M), we obtain

|e3aros(E3a’r £ 3a?) 304 5(E3a%T)||4 < 4AM
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and hence ||e2q+5(£2ax)||4 < 6M holds for all z € R. This implies (2a) C (A4, o, 6M).
Third, consider

(ea(£a)eontp(Ea%)e301(ED))? = e0(F2a)e00+5(£20%)e3015(£2b + 3a%)

Observe that ||e,(2a)||a < 6M. Hence ||e20+5(E£20%)e3015(E£20 + 3a®)|| 4 < 8M holds. So

considering the commutator
BA(16M) > (204 5(F20%) 304 5(120 £ 3a°), £5(7)) = £30425(7(2b £ 3a?))

and remembering ||e3,425(32a®)||4 < 2M implies (2b) C &/(A,18M). This finishes the

proof of the lemma. O
Next, we will prove the following lemma:

Lemma 4.5.4. Let R be a commutative ring with 1, A € Go(R) and let a,b € R be given
such that there 1s an M € N with

lea(£a)e20+5(Ea")es045(2b) 4 < M.

Then
(3b%) C (A, 192M).

Proof. First, consider the commutator

(a(£0)E20 5(£02) 5045 (), £_a(1)

~ (20 5(£02)e045(£0), £-a(1)) - (e—a(1), 2a(a)
(
(

= (E3a48(2D), -a (1)) - (504 5(%0%), 20 (1)) - (£-a(l), 2a(*a))

(£
= (E20+5 (20 (2:D)25 () g0 0 (D) )20+ (507
+ Eass(£207)25 (3073002 (£30*) - (2_a(1), 20 (0))
= (c2a+5(Eb)earp(Eb)esaras(£3a’)es(£b)esaros(£D?))
a5 (£207) 25 (30750125 (30%) - (60 (1), 20 (20))
= 901 5(E0)Ear s (b £ 2a)e30105(£3a%b £ 3a* £ b*)ep(£b £ 3a?) - (64 (1),e0(Fa))
~ (e_a(1),0(£a)) - e2015(Fb)ears(Fb & 2a%)e30195(E3a’b & 3a* + b%)es(£b + 3a®) =: B

But note that all factors of B besides €24 5(Eb)ears(Eb + 2a%) and (e_4(1),e4(Fa))
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commute with €_,(1) and thus we obtain

(B,e-a(1)) = ((e-a(1),ea(F0)) - €201 5(Fb)cars(Fb £ 2a%),a(1))
~ (e2018(Eb)ears(ED) e-a(1)) - (e-a(1), (e-a(1),ca(Fa)) ™)
= (Catp(Eb £ 20%), 6 0(1)) 2455 (e504 5(£D), e _a(1))
(e2a(1), (e2a(l), ca(zxa)) ™)
= e5(3(£b + 2a2))£2a+ﬁ<ib>g 1+ 5(£2D)eg(£3D)es0405(3b?)

. (a,a(l), (e_a(l) 1)
= e5(3(&b £ 2a° ))gw( )gﬁ(i?)b)ggam(ﬂb?)
- (e—a(1), (e_al )

= eg (3(xb £ 20> ) + 3b) 5a+ﬁ(i2b)ggam(13b2) (e2a(1), (e2a(l), ca(a)) ™)

This is an element of B4(4M). Further, dependent on the respective signs the term
£5(3(£b+2a?)£3b) is e5(+£6b+6a?) or e5(£6a?). But ||es(£6b)||4 < 18M holds according
to Lemma and we have seen (3a) C &/(A,2M) in the proof of Lemma [4.5.3] Thus
£5(3(£b % 2a%) & 3b) is an element of B4(20M). Hence

C = a1 5(22b)e30125(36%) - (6 _a(1), (_a(1),20(Fa)) ') € Ba(20M +4M) = BA(24M).

Note, that (e_q(1), (e_a(1),ea(%a)) ") commutes with £_3,_25(1) according to Lemma4.3.9(1)

and hence

= (cat5(£2b)e30125(£3b), £_30_25(1))
~ (£30+428(£3b%), e _30a-25(1)) - (e_30-25(1), €ars(£2))

(230+28(£30%), e_30-25(1)) - £_20—p(£2b)e_o (£40%)e5(£8b)e_30—5(£8D%)
. D.

(C, 5—3a—25

Observe that || D] 4 < 48M. Note next, that all factors in this product besides

(£3025(£30), £-30-25(1))

commute with £5(1) and hence

Ba(96M) > (D, e5(1)) = ((e3a+28(£30°), e-3a—25(1)), £5(1))
= e_30-5(£3b%)eg ((£3b7) £ (£3b%)?) .
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The last equation follows from Lemmal[4.3.9)(3). Lastly, consider for z € R the commutator
Ba(192M) 3 (e_30-5(£3b%)eg ((£36) + (£30%)%) , €30425(2)) = e5(£3b°x).
This implies as x € R is arbitrary that
(3b?) C e(A,3a + 28,4 - 48M) = (A, 192M)

and finishes the proof of the lemma. O

These two lemmata imply the following proposition:

Proposition 4.5.5. Let R be a commutative ring with 1, A € Go(R) and let a,b € R be
given such that there is an M € N with

lea(£a)e20+5(E0")es045(2b) 4 < M.

Then
(b%) C (A, 210M)

Proof. Lemma implies
(26%) C (2b) C &/(A,18M)

and Lemma implies
(3b%) C (A, 192M).

So we obtain as b> = 3b%> — 2b? that

(b%) C (A, 18M + 192M) = &/(A, 210M).

We further need the following lemma:

Lemma 4.5.6. Let R be a principal ideal domain, x € R and let

A =1y (Z Z) € Gs(R)

be given. Then

(A 2a5(2)) = Zara(Ea(a — 1)) - cp0r(Eacla — 1)
cea(FxC) - E2045(FCT?) - €301 5(F2 P (a — 1) £ P2®)
- E3ar05(E2%c(a —1)* £ cx® £ cx’(a — 1))
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and
(Aye_o(7)) = e_a(Faz(a—1)) - e_90_s(Fcx®(a — 1))

€ _q_p(Fer) €90 _p(Er%c) - £ 34_p(Fex?(a — 1) £ 2Pc £+ 2°c(a — 1))
c € 3q_9p(x2’® £ P (a - 1))

hold.

Proof. For the first claim, we distinguish the cases ¢ # 0 and ¢ = 0. For the first case,

note that we can write
A=ceg(c(a—1))e_p(c)ep(cH(d - 1))

in Go(Q) with @ the fraction field of R. Then the following chain of equations holds:

(A, ears(@)) = (es(c™ (a = 1))e—p(c)ep(c™ (d = 1)), fasp(@))
= (e ﬂ<c ERCESHENTIE)
= (e-5(0), eaw(x)fﬁ(ﬂ“*”
= (ca(%z0) 52a+5(icx )e3ar25(Ecr?)esqys(EPT 3))5’3(671(%1))
Ea(Fzc)sle (0 1))) vt p(FCT?)e30125(Fca?) <€3a+/5(j:czxg’)fﬁ(cfl(a_l)))
= casp(Er(a — 1))egars(Er?c(a — 1))esars(E2°cP(a — 1))
- E3ar05(E2c(a — 1)) e, (£20)
- a0t (ECT?)E30125 (F¢17 )04 5 (£ 07 30105 (Fer’ (0 — 1))
= cors(n(a— 1)) - Eaapp(aPc(a — 1)
cea(£7C) - Eanyp(Eer?) - e300 p(F2° P (a — 1) £ Fa?)
- €3010p(FPc(a — 1) + ca® + ca*(a — 1))

This finishes the case ¢ # 0. If ¢ = 0 hols, then A = hg(a)es(a'b) and hence
(A, 2a+5(7)) = (hg(a)es(a™'b), ears(z))
= (h(a), catp(2)) = carp(z(a — 1))

holds. This finishes the proof of the first claim. The proof for the second claim works the
same way, SO we omit it. O

This enables us to prove Proposition [£.5.2}

Proof. Let @) be the fraction field of R. Set T,,(R) =Y, U {1} and T3(R) = Y3 U {1} for
Y., Y3 as in Proposition The first step in proving this is to note that according to

101



Proposition [4.3.4|and Lemma 4.5.1, we can find X&l), Xc(f), xP e T.(R), Yﬁ(l), YB(2)’ Yﬁ(g) €
T5(R) as well as an element b € BT (G5, R) such that

A=bxPOY I xPyP Py

Then observe:

(Aa53a+26(1)) = (bXC(MI)YIB(I)XC(MQ)Yﬁ(Q)XC(M3)Yﬁ(3)7€3a+2ﬂ(1))

~ (VXY esaras (1) - (Brasan (1), (X)) (X 0) 1Y)
(XY, canra)” (V8. cr0120(1))
)

OO ED) ! ains(D)]

But examine the various factors: First, X\ € T.(R), Yﬁ(i) € Ts(R) holds for all i = 1,2,3
and (w,, wg) is a minimal expression for w,wg with respect to the fundamental reflections.
Thus according to Proposition |4.3.4] XC(VS)YIB(?’) is an element of (B(Gs, Q)wB(Gs,Q) N
G2(R) for w € S(w,wg). But note wywg(3a + 26) = [ is a positive root and so
Lemma implies together with T'(8) = {B,a + B,2a + ,3a + 5,3ca + 23} that

(2) (2)
(XOV3Y, esas2s()s € ( J] (eu(R)?
YET(B)
(2) (2)
= (e30125(R)e3018(R)esas s(R)ears(R))s e5(R)Y

C (e3a+28(R)e3a18(R)e2048(R)ears(R)ea(R))Gp(R).

The last inclusion follows from the second part of Lemma Second, Lemma [4.3.9((3)
also implies (Yﬁ(Q), €3a+28(1)) € €30428(R) - €3048(R).

Next, (wq, wg, w,) is a minimal expression for w,wpw, with respect to fundamental
reflections. Thus Proposition 4.3.4/implies that (Xg))_l(Yél))_l(Xél))_lb_l is an element
of (B(Gs,Q)wB(G2,Q)) N Ga(R) for some w € S(wy, ws, w,). Further w,wgw, (3 +
23) = B is a positive root. Thus Lemma implies that

(X)) XD esanas(1) € ] 2u(R) = esas28(R)esas8(R)erass(R)ears(R).
YeT(B)

All of this is to say, that reordering the terms of

) !
(XYY, eaarap(t)'7 (V5 smrza(D) ] - (X OF) (X)) esaras(1))]
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we obtain that (A, e34425(1)) is conjugate to an element B of

€30+28(R)€30+5(R)€20+5(R)€ars(R)ea(R)Gs(R).

Hence, we can find a,b,c,d,e € R and an element

Zp =g (i Z) € Gs(R)

such that
B = £34125(0)€30+5(0)€2045(¢)ars(d)eale) Zp.

The remaining proof of the proposition proceeds in four steps: First, we will show that
(%) C &1(A,32) and (b*) C (A, 45360).
Then second, we show that applying the calculations of the first step to B2 implies
(d®) C &1(A,32) and ((da + 3d%e)?) C (A, 45360).
Third, we prove that
([£s(g—1)*£s+(¢—1)s+3c+ 36}2) C 1(A,6720) and (64c*) C (A, 2246272).

Then fourth, we construct an ideal Iy(A) with the desired properties.
For the first step, note that ||B||4 < 2. Next, observe that for z € R, we obtain from
the third item of Lemma [4.3.9{(3) that

(B, €3a+5()) ~ (Z5,€30+5(7)) = €3a15(x(t — 1))e30125(2T).

Note that € R is arbitrary, so we obtain by commuting e3,+5(z(t — 1))esa428(z7)
with €5(1) that
(1 — t) C 61(14,8).

Similarly, we obtain by commuting €3, 5(2(t —1))esq125(xr) with e_g(1) and conjugating

the resulting term e3,43(—2r) that
(T) - 5[(14, 8)

Similarly, one obtains using for x € R the commutator (B, e34+25()) that (1—g), (s) C
61(/1, 8)
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Next, consider the commutator

(B,es(1)) ~ (e3a+p(b)eale) Zs,5(1))
~ (Zg,e5(1)) - [(E3ars(=b)zal(—e),e5(1))] "

( (1)) - [(eal=€)s (1)) (304 5(=b), 5(1))]

( 1)) - [e3a+25(£€%) 30t 5(E€%) 204 5(£€%)as s (£€)e30125(—D)]
~ Earp(Fe)eontp(Ee?)esars(Eed)esaras(b £ €*)(Zs,e5(1)) =: C) € Ba(4).

[
d
[

-1

Next, we consider the commutator

= (Carp(Ee)erars(Ee®)esarp(Ee’)esar2s(b £ €%)(Z5,£5(1)), £5(1))
(€3a+,8 (+e%) Zg,eg(l)),gg(l))

~ ((Zs,25(1)),£5(1)) - (e5(1), E30+5(£€”))

= ((Zs.e5(1)),5(1)) - €3aras(£e’) =: Oy € Ba(8).

01,85

Next, for x € R consider the commutator

(Coye_30—p(x)) ~ (€30128(£€’), e 30—p(2)) - (e_sa—p(x), (Zs,e5(1)),€5(1)) )
= ep(£xe’) - (e_s3a—p(x), ((Z5,25(1)),25(1)) ")

Note that
o 1—gs (¢—1)(¢+1)+gs -
((Zg,es(1)),e5(1)) ™ = (Vg 2 L4 s(g+s) ,ep(1))
(L) 0= et —qs)) 2(1-gs)\
g —s* 1—5%(1—gs—s?)
gy (LA e ) —S(Q(2—QS)+S(1—qS))
g st 1+ (1—gs)s?

and consequently, we obtain from Lemma [£.3.9(3) that

(csa-p(@), (Z5,25(1)),5(1) ") = e_sas(~25*(1 — g5 — 5°))e_sa_ss(—as").

But we already know that
(s) Ce(A,8)
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and hence we obtain that

I(e-s0—p (), ((Zs,25(1)),25(1)) lla = lle—sa—p(—25*(1 — g5 — 5%))e—3a—20(—75") |4
<2x%x8=16.

This in turn implies that

les(ze*)lla < 2(1Calla + l(e-sa-5(2), ((Zs,5(1)),e5(1))7H)lla < 16 + 16 = 32.

So, we obtain
(e*) C ai(A, 32).

This proves the first statement of the first step.

For the second statement of the first step, observe first that ||Cy]|4 < 4 and
|e30+8(F€%)esa125(£€?)||4 < 64. This implies

03 = 6a+,3(ie)€2a+ﬁ<i€2)83a+25<b)(Zg,83(1)) € BA(68)

Hence we obtain

Ba(136) 3 (Cs,6-30-5(1)) ~((Z5,25(1)),£-3a—5(1))
- (e-3a-5(1); €arp(Fe)e201 5(£6?)E30125(—D)).

But similar to the argument showing ||(e_3o—s(x), ((Z5,£5(1)),5(1)))|la < 16, we obtain
1((Zs,€5(1)), € -3a-5(1)) ][4 < 16. Thus

B4(152) 3 (2a+5(Fe)e2a+5(Fe*)es0125(—b), €-30-5(1))
~ (€30+26(=b),e-30-6(1)) - (=305 (1), Cars(E€)e20+5(€”))
€

= e5(=b)[(e20+5(£€?), €-3a-5(1)7 5 - (caps(Fe), e-ga—p(1)] "
= ep(—0)[(e—a(Fe)ears(£e!)esayap(Ee®)es(e)) et

= ep(—b)e_alEe?)7 2 ey 5(Ee!)egasap (£ )es(Ee’)

= e5(—b)e_o(£e?)eg(£3e*)eqys(Eet ) esaros(E£e®)es (e

= ep(—b)e—a(Fe?)ears(£e ) esarap(Ee®)es((£e” £ 3)e?)

Note further that (e3) C &/(A4,32) implies

lesaran(Fe®)es((£e” £ 3)e?)[|4 < 64.
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This implies that

Ba(216) = BA(64 + 152) 3(e5(—b)e_q(de?)eqy s(Ee))™™
= 53a+ﬁ(ib>5a(i€2)52a+ﬁ(i€4) = 04.

But applying Proposition to Cy implies
(b%) C &1(A,210-216) = ¢;(A, 45360).

This finishes the first step.
Also note that applying Lemma to Cy implies

(2b) C (A, 18 % 216) = ¢;( A, 3888). (4.6)
For the second step, observe first that

BYs = 53%5(j:a)aga+25(ib)€2a+5(ic)€a(j:d)saw(j:e)Zgﬁ
= e30425(Fb £ 3de?)esarp(£a + 3d°e)esas p(dc & 2de)eqy p(Fe)ea (£d) 257

Note, that the first step does not use any particular properties arising from the definition
of B beyond the fact that it is an element of

3025 (R)esar o R)eras 5 (R)eass(R)eal R)G(R).
But this is also the case for B“# and hence we obtain using the same calculations that
(d*) C g1(A, 32)

and
((£a £ 3d%e)?) C &/(A, 45360).

This finishes the second step.

For the third step, we split the argument into two parts again: First, we will show
([£s(q— 1) £ s+ (g — 1)s £ 3¢ + 3e]*) C &,(4, 6720).

and secondly, we will show
(64c%) C (A, 2246272).
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For the first part, consider the commutator

~ (€20+8(C)€al€) Zp, €atp(l))

) - [(ca(=€)22015(—¢), 2arp(1))]

5(1)) - [(f2a+8(—€), €as5(1))2 " (ea(—e), carp(1))]
(1)) -

(1))

Zﬂ, Ea+p 1

B3 Eat
8> Ea+ [£80425(£3¢)° a0 5(2€) 501 5(£3€%) 04 25(+3€)] !
3098 (3¢ £ 3€)e3015(E3?) 201 5(F26) = Dy

(
)
)
)
)

Next, note that, Lemma implies

(Z:€at+6(1)) = carp(E(g — 1)) - €2a45(Es(g — 1))
- €a(%8) - E2a45(ES) - E3048(£5* (¢ — 1) £ 5%)
“E3a428(Es(q— 1) £s£s(g—1))

Hence D; looks as follows

Dy = (Zg,2a1p(1)) - €3a+25(E3¢ £ 3€)e3a15(£36%)e20+5(£2¢)

= ca+s(E(g — 1)) - e2045(Fs(¢ — 1))
c€a(£8) - €a015(ES) - €300 (8% (g — 1) £ 57)
- €3a+28(E£s(q — 1)?+s+s(g—1))
- €30028 (3¢ £ 3€)e3015(E£36%) 204 5(32€)

= asp(E(q — 1))e30425(Fs(q — 1)> £ s £ 5(q — 1) £ 3¢ £ 3e)
- Eoa1p(ES(q — 1))ea(Es)
- €9015(£8) - €301 5(£5*(q — 1) £ 5%)
€301 5(£3€%) 2204 5(2€)

Note that all factors of D; besides e,4+5(£(¢ — 1)) and

E3a+428 (£s(qg — 1) £ s+ s(g — 1) £ 3c + 3e)
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commute with e_g(1) and that ||D;]|4 < 4. Thus

(D1,e-5(1))
= (ats(£(q — 1))eza42s (£5(g — 1)* £ s £ 5(¢ — 1) £ 3c £ 3e) ,e_g(1))
~ (30428 (£s(g — 1)* £ s+t s(g — 1) £3c £ 3e) ,e_5(1))

- (e-5(1), easp(£(q — 1)))
= €304 (Es(¢— 1) £ s £ s(qg— 1) £ 3¢+ 3e)

a0 = 1)eans s (0 — 1D)saras((g — 1)P)esars(Ela — 1)?)
=: D,.

However, similarly to the calculations of the first step showing (1 — t),(r) C &/(A,8),
the factors e3,425(+(q — 1)) and e3,15(%(q — 1)3) are both elements of B4(8). Also
Dy € B4(8) holds. Thus

Dy :=eo(£(q — 1))e2a45(E(q — 1)%)
E3a+8 (£s(g — 1) £ s+ (¢ —1)s £ 3¢+ 3e)

is an element of B4(16 + 2 % 8) = B4(32). But applying Proposition to Ds yields
that

([£s(g—1)*£s+(¢—1)s+3c+ 36}2) C (4,32 210) = (A, 6720).

This finishes the proof of the the first statement of the third step.

For the second part of the third step, consider the commutator

(B,e-a(4)) ~ (3a45(b)2a45(C)ears(d)eale) 25, € —a(4))

~ (f2a+p(C)2a+s(d)ea(e) Zs, e-a(4))(6-a(4); €30+5(=D))
= (Zg,6_qo(4))720+5 (©)zatp(d)eale)

+ (20+8(0)€a+p(d)eale), e—ald)) - (6-al4), 30+5(—D))-
To proceed, we note two facts: First, observe that
(e_a(4), E3018(—b)) ~ E30195(F64b%)5(£64b)e oy 5(F16b)e00 1 5(E4D) (4.7)

But
(2b) C &(A, 3888)

holds according to (4.6) and hence Lemma implies
(4b) C e5(A, 3888 % 8) = e4(A,31104).
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These two facts imply together with (4.7) that
l(e—a(4),e30+(—b))|la < 2% 3888 + 2% 31104 = 69984. (4.8)
Second, observe that Lemma 4.5.6| implies

(Zs,€-a(4) = e_a(E4(q — 1)) - €_20_p(£165(q — 1))
v € o p(F48) - £ 90 p(E165) - € 34 5(E£64s(q — 1)* £ 64s + 64s(q — 1))
©€_30_9p(+645* £ 645*(q — 1))
=c_o(+4(q —1)) - e2q—p(£16s(q — 1) £ 165)
v € q_p(F45) - £ 34 p(E64s(q — 1)* £ 645 4 64s(q — 1))
C € 34-25(F645% £ 645%(q — 1) £ 1925%)

But note that
(8) C &Tl(A, 8)

and hence Lemma implies that
(2s) C es(A,64).

Hence € 5, 5(+165(q—1) £ 165),c_o_5(+4s) € B4(64) and £_3,_5(+64s(q—1)? £ 64s +
64s(q — 1)), €_30_25(+64s% £ 645*(q — 1) + 192s%) € B4(8) hold. Further, we have

(1—q) Ce(A3a+283,8)
and thus Lemma [3.5.4)(2) implies
(2(1 —4q)) Ce(4,a,64).
Hence |le_o(+4(q — 1))||a < 64. Tt follows that
1(Zs, e_a(4))20rs(arsldeal)]| f = ||(Zg,e_0(4))]|a <3%64+2x8=208.  (4.9)

Summarizing (4.8) and (4.9) with

Ba(4) 3 (B,e_o(4)) ~(Zg,6_o(4))20+8(2ats(deale)
(e2a48(c)2ars(d)eale) e-al4))(e-a(4), E3a+5(-D))

we obtain ||(e20+5(¢)eatp(d)eale),e—a(4))]|a < 44 69984 + 208 = 70196.
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Next, observe

(e20+p(c)earp(d)eale), e-a(4))

- (2201p(—C)ears(—d), e a(4))7

[(ears(—d), e-a(4)) ) (201 5(—C), e _a(4))] "
[eg(£12d)720+5 ¢ 5(£8¢)e5(48¢) 30125 (£12¢%)] 7!
[65(i12d)5a+5(i8c)55(:|:48c)53a+25(:|:12c )t

< [ep(£12d £ 48¢) g0 5(£8¢) 301 25(£12¢%)] !

- e5(£12d 4 48¢)e 01 5(E£8¢)e30105(E£12¢%) =: E.

Observe ||F1||a < 2% 70196 = 140392. To simplify notation, we set
w = +12d £+ 48¢, v := +8¢ and w := +12¢%.

Note that (e,(e),e_4(4)) commutes with e_3,_25(1) and hence

(E1, e-3a-25(1))

~ (ea(u)ea+s(v)esar28(W), €—3a—25(1))

(e6(u)eats(v),e-3a—25(1)) "

(cats(v); e-3a-25(1))7" (g5 (1), e 3a-25(1))] "
(6-sa-5(F0")es(£0)e—a(F0?)e —2ap(F0)) Ve _gas(Fu)] ™!
€ 3a_p(E0? £ u)es(£vH)e_o(£0?)e 90 _s(Fv)] !

€ 9a_p(E0)e_o(F0H)ep(£0%)e 34 (v £ u) = Ey

~ (e3a128(W), e_34—25(1

( w), (1)) -
= (€3a+28(w), €-3a-25(1)) - |
= (€3a+28(W), €-3a—25(1)) - [
= (€3a+28(w), €-3a-25(1)) -
= (€3a+28(w), €-3a—25(1)) -

Observe that || Es||4 < 2%140392 = 280784. But all factors of £ besides (£3a4425(w), €_3a—25(1))

and e5(+v?) commute with £ 3, 25(1) and hence

(Ea,e-30-25(1)) = ((E3a425(w), £-3a-25(1)) 5(F0), € -3a-25(1))
~ (es(£0?),e-3a—25(1)) - (e—3a—28(1), (€30+28(w), E_3a—25(1)) ")
= e_3a-p(£0%) - (-30-25(1); (€30+25(w), €-3a—25(1)) ") =t Ej.

Observe that || F3|[4 < 2% 280784 = 561568. Define further

Zsar25 = (6—3a-28(1), (E3a+28(W), _3a—25(1))").

Observe next that according to Lemma there are 7,j € R with

(Zsarap,e-5(1)) = e—p(1)€za15(4)-
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Thus, we obtain

(Es,e-5(1)) ~ (Zsarzp,e-5(1)) - (e-5(1), e—3a—p(£0?))
= e 5(1)e30+6(7)e-3a-25(FV7).

Next, consider for x € R the commutator

(E—B(i)53a+,3(j)6—3a—2ﬂ(iv2)753a+ﬁ(x>> ~ (5—3a—25(iv2)753a+ﬁ(x)> = 5—5@02)-
But v = £8¢ and hence we obtain that
(64c%) = (v*) C (A, 4 % 561568) = ¢;(A, 2246272).

This finishes the third step.
For the fourth step, define the ideal I4(A) as follows:

Io(A):=(1—t,1—q,s 1 b d° (a+3d%)? [£s(qg—1)> £ s+ (¢ — 1)s & 3c % 3¢]?, 64c)
C e(A,4 %8+ 32+ 45360 + 32 + 45360 + 6720 + 2246272) = ¢;( A, 2343808).

To finish the proof of the proposition, we prove that each maximal ideal m with
Iy(A) C m contains a,b,c,d,e,1 —t,1 —q,r,s. Clearly 1 —t,1 — g,s,7 € m. Observe
further that e, b, d are elements of m, because €3, 0%, d®> € m. Also (a4 3d?¢) is an element
of m, because (a + 3d%e)? is an element of m. But e is an element of m and hence so is
a = (a + 3d*e) F 3d*e. Next, observe that

[+s(g— 1)+ s+ (qg—1)sE3cE£3e)> €m

holds and hence
[+s(q—1)2+£s+(qg—1)s£3cE3e] €m

holds as well. But all the elements s(¢ — 1)%,s,(¢ — 1)s,3e are already known to be
elements of m. Hence 3c is also an element of m. Next, observe that 64c*> = (8¢)? is an
element of m and hence 8c is an element of m as well. But if both 3¢ and 8c are elements
of m, then so is

c= 3% 3c— 8c.

But a,b,c,d,e,1 —t,1 — q,7,s € m implies 7, (B) = 1 and thus we obtain as
(A,€3a+25(1>> ~ B that
Wm(Aanga—i-Q,B(l)) =1.

This finishes the proof. O
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Next, we show the following:

Proposition 4.5.7. Let R be a principal ideal domain and A € Gy(R). Then there is an
ideal
I(A) C (A, 14062848)

such that V(I(A)) C II({A}). Phrased differently, for R a principal ideal domain, one
can pick L(G3) in Theorem[3.2.9 as L(Gs) = 14062848.

Proof. First, we will construct the ideal I(A). For an element T € G5(R) let Io(T) be the
ideal constructed in Proposition [4.5.2]
Define

I(A) :=Iy(A) + Io(ngwgl) + To((waws)® A(waws) ™)
+ Iofws(watws)* Alwaws)ws) + To(wswa(A,2a(1))wr w5")
C e1(A, 4 % 2343808 + 2 % 2343808) = £,(A, 14062848).

We will prove that I(A) has the desired properties. Let m be a maximal ideal con-
taining 7(A) and set A := 7,,(A) and K := R/m. We will show that A is central in
Go(K). To see this, observe first that K is a field. Thus the Bruhat-decomposition
[41, Chapter 3, p. 26, Theorem 4’| of Go(K) implies that, one can find elements u; €
Ut (Ge, K),w € W(G2),t,s € K —{0} as well as uy € UT(Gy, K) with the property that
wugw ™ € U™ (Gy, K), such that

A = uyho(s)hs(t)wus.

By definition of I(A), the maximal ideal m contains Io(A) and hence as £3,425(1) com-

mutes with all elements in UT(Gq, K'), we obtain

1= (A, e3a425(1))
= (urho(8)hg(t)wus, e30125(1)) = (U2, €30125(1)) MO (uy hy (s)hs(Hw, £30125(1))
= 1he@hs v (1 ho (5)hs(t)w, E3a425(1)) = (urha(s)hs(t)w, £30425(1))
~ (ha(8)hs(t)w, €30125(1)) = ha(s)hs(t)wesarop(Dw ™ hg(t™ ) ha(s™")esaras(—1)
= ha(8)hpeuw@ares) (F1) st ) ha(s™)esar2s(—1)

(:ts<w(3a+26),a)t<w(3a+26),6))

= Ew(3a+2p) €3at26(—1).

But according to [41l Chapter 3, p. 21, Corollary 2|, the only way that the last term can
possibly be conjugate to 1 and hence be trivial is if w(3a 4+ 28) = 3a + 25. One easily,
checks that this restricts the possible values for w € W(Gs) to w = w, and w = 1.

Let us assume for contradiction that w = w,. But us € UT (G, K) has the property
wusw ™' € U™ (G, K) and hence, one obtains that there is a y € K with uy = &,(y).
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Furthermore, we can find a, b, c,d, e, f € K with

w1 = €3a+25(f)€30+8(€)e2015(d)ea+s(c)ea(b)es(a).

Recall that [O(ngwgl) is a subset of m and hence wﬁflw? commutes with €3,425(1)
in G5(K). This implies

= (A, wy ' esar25(Dwp) = (A, €304 5(£1))

(53a+2ﬁ( )€3a+8(€)e20+8(d)ea+s(c)ea(b)es(a)ha(s)hs(t)wata(y), €3a+5(E1))
= (€30+28(f)e30+p(€)€20+8(d)€ars(c)€a(b)eg(a)ha(s) s (t)Wa, E3a+5(£1))
(e5(a)ha(s)hs(t)Wa; €3045(F1))
~ (ha(s)hg(t)wa, €30+5(E1)) - (E30+6(£1), e5(—a))

2

= ha(s)h ( )wa53a+ﬁ(i1) lhﬁ’(t_l)ha(s_l)g?)a—f—ﬁ(:‘:l) : 53a+25(ia)
= ha(s)h ( )€ﬂ(i1)hﬁ( Dha(s™")esars(F1) - €30428(Fa)
= ep(s' Mesars(F1)esar28(Fa)

(
(

€p +577 )53a+6<$1)€3a+26(ia)

But according to [41, Chapter 3, p. 21, Corollary 2|, independently of the values of
s,t and a, the last line is never trivial and this contradiction implies w = 1. Hence, A is
an element of B(Gs, K) = BT (Gs, K). But recall further that

]0((waw5)3A(waw5)_3) cm

and

-3

Io(ws(wawg)® Alwawg) wﬁ_l) cm

This implies that A commutes with the two elements

(waws) esarp(1) (Wawp) > = e_30—9p(£1)

and

-3

(ws(wawp)*)esass(1)(wawg) *wy' = e_ga_g(£1)

and so we obtain similar to the previous calculations, that A € B~(Gs, K) holds as well.

But this implies

A € B(Ga, K) N B~ (Go, K) = {ha(a)hs(b)] a,b € K — {0}}.
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Hence, we obtain A = h,(s)hgs(t) for certain s,t € K — {0}. But this implies that

1= (A, e30125(1)) = ha(5)hs(t)esaras (Dt Dhals ™ )esasran(—1)

(S(3a+26,a)t(3a+25,6>)

= 30428 €3at28(—1)

= €3a420(s"t" = 1) = €3a425(t — 1).
Hence ¢ = 1 holds and thus A = h,(s). Further A commutes with e3,5(1) and hence
1= (A, £g05(1)) = hal)20s5(Dha(s™)esass(—1) = 2gassls’ — 1).
This implies s® = 1. Last, observe that
]O(wﬁwa(A,ea(l))w;Iwgl) cm.

This implies that wswa (A, £a(1))w, 'w;' commutes with £34425(1) and hence that (4, e4(1))

commutes with
w;1w5183a+26<1)wlgwa = w301 5(E)wy = e5(£1).

But observe

Hence

1= (A (1)), 5(1)) = (als® — 1),25(1)
= C30r25(E(5* = 1)P)eaara((s? = 1)Mesars(£(s” — 12)ears((s> - 1))

follows. But this implies in turn that s> —1 = 0 and hence s?> = 1. But if both s> = 1 and
s3 =1 hold, then s = 1 follows and hence A = 1. This finishes the proof. O
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Chapter 5

Strong and uniform boundedness and

stable range conditions

The strong boundedness theorems, Theorem and Theorem of Chapter [3] nat-
urally raise the question, which rings satisfy the main assumption, that is bounded gen-
eration by root elements and in case of ® # Cy or G what the value of Q(®, R) is. The
main examples we talk about in this and the next chapter are rings of algebraic integers
and semi-local rings. Both of these classes of rings have stable range at most 2, so we
talk in the first section of this chapter about stable range conditions and their connection
to bounded generation. In the second section, we analyze the boundedness properties of
Chevalley groups defined over semi-local rings in greater depth. In the third section, we
show for a specific infinite ring R that the assumption in Theorem that R/2R is
finite is not necessary to show that Sp,(R) is strongly bounded.

5.1 Stable range conditions and matrix decompositions

We first define the stable range of rings:

Definition 5.1.1. The stable range of a commutative ring R with 1 is the smallest n € N
with the following property: If any vy, ...,v,, € R generate the unit ideal R for m > n,
then there are tq,..., %, such that the elements v] := vy + t1vg, ..., V), := Uy, + tvp also

m

generate the unit ideal. If no such n exists, R has stable range +oo.

Remark 5.1.2. If for each a € R — {0} the ring R/aR has stable range 1, then R is said to
have stable range at most 3/2. A ring R with stable range at most 3/2 has stable range
at most 2 as well. Further, having stable range at most m for m € N or at most 3/2 are

first order properties.

Next, let n > 1 be given. Then picking the standard representation of SL,;(C) with
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maximal torus the diagonal matrices, one obtains
G(An, R) = SLps1(R) = {A € RDX(mH|det(A) = 1}

We can choose a system of positive simple roots {1, ..., a,} in the root system A, such

that the corresponding Dynkin diagram looks as follows

Then the root elements for positive, simple roots can be chosen as e,,(t) = I,y +

tenti—im—it2 for t € R and 1 < i < n. More generally, the root elements for positive
roots are then the elementary matrices I,41 + ze;; for 1 < ¢ < j < n+ 1 and the root
elements for negative roots are I,.; + xe; ; for 1 < j < i < n + 1. This further yields
Ut (A,, R) as the group of upper unitriangular matrices and U~ (A4, R) as the group of
lower unitriangular matrices in R TD*(+1)  Modulo these choices, note the following

result:

Proposition 5.1.3. [I7, Lemma 9] Let m € N and n > m be given and let R be a

commutative ring with 1 of stable range at most m.

1. If m > 2, let SL,,(R) be identified with a subgroup of SL,(R) as follows

SL(R) = {(I”m A) | A € SL(R)}.

Then SLy(R) = U+ (Ap_1, AU~ (An_1, R)U*(An_1, R)U~(A_1, R)SLim(R) holds.

2. If m =1, then SL,(R) = U (A,_1, R)U (A1, R)UT (A1, R) U (A,_1, R) holds.
Recalling the choices made for the symplectic group in Section [£.1} we obtain the

following decomposition for symplectic groups:

Proposition 5.1.4. Let R be a ring of stable range at most 2 such that the group Sp,(R)
is generated by its root elements and let n > 2 be given. Then identifying Sp,(R) with the

subgroup

A B A \ B
Sp4(R) = ‘
0,5 I, s C \ D

€ Spy(R)

J

of Sps,(R), the following decomposition holds for the elementary subgroup E(C,, R) of
San(R) :

E(C,,R) =U"(C,, R)U(C,, R\UT(C,, R)U (C,, R)Sp,4(R)
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Proof. In Section [4.1] we choose a system of positive simple roots {av, ..., a,_1, 3} in C,

such that the Dynkin-diagram of this system of positive simple roots has the following

C,: Qn—1 e @: @

and such that Eay (t) = ]2n + t(en—i,n—i-l—l - 62n—i+1,2n—i) for 1 S 1 S n—1 and Eﬁ(t) =
Iy, +tey 2, hold for all t € R.
We prove this proposition by adapting the strategy of the proof of [42, Proposition 1]

form

and proceeding by induction on n € N. First, the statement is obvious for n = 2. Next,

set
X :=U"(C,, R)U(C,, R)UF(C,, R)U(Cy, R)Sp,(R).

To prove X = E(C,, R) it suffices to show A- X C X for all A € E(C,, R), because
X contains the neutral element Iy,. However F(C,, R) is generated by root elements and
hence it suffices to show ¢4(¢) X C X for all ¢ € C,, and t € R. However, each root element
is conjugate modulo elements of the Weyl group to an element of the form ,(¢) for ¢ a
simple positive root. Thus it suffices to show wyX C X and €,(¢t)X C X for all positive,
simple roots ¢ and all t € R. But

wy = e¢(1)e—p(—1)eg(1)

holds. Hence it suffices to show ,(t)X C X and e_4(t)X C X for all positive, simple
roots ¢ and all t € R.

However due to the definition of X, it is clear that £,4(¢)X C X holds for all positive,
simple roots ¢ and all ¢ € R. Thus it suffices to show e_,(t)X C X for all positive, simple
roots ¢ and all t € R.

We distinguish two cases for ¢. First, assume that ¢ is not «,,_1. Then we separate C,,
into two subsets: The subset ®; of roots whose expression in terms of simple roots does
not involve «a,,_1 and its complement ®, in C),. Clearly ®; is as a root subsystem of C,
isomorphic to C,_;. Next, observe that according to [41, Chapter 11, p. 104, Lemma 62|
and slightly abusing notation by writing U*(®,, R) for the subgroup of E(C,,, R) generated
by the elements {e4(z)| z € R, ¢ € 3 N PE}, we have

Reordering the terms in U (C),, R), we have further

Ut (Cp, R) = Ut (0, R) - Ut (91, R) = Ut (P4, R) - UT(®s, R)
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and similarly
U (Ch,R)=U (P9, R) - U (P1,R) =U (91, R) - U (g, R)

and applying these equation for U~ (C,,, R) and U*(C,,, R) together with (5.1)) and (5.2)
repeatedly to the definition of X, we obtain

X = (U (®y, R)U~ (@3, R))2(UT (&1, U (@1, R))?Sp,(R).

But note that e_4(¢) is an element of U~ (®, R) and hence applying (5.1) and ((5.2))

repeatedly, we obtain

e s()X =e_4(t) - (UT(Po, R)U (P2, R))* - (UT (P4, R)U (P4, R))? - Spy(R)
C U (P, R) - (U (Do, R)U (92, R))? - (UF(®1, R)U (®1, R))* - Spy(R)
= (U (@3, R)U (P2, R))* - [U (@1, R) - (U (@1, R) - U™ (P1, R))” - Spu(R)].

However, note that ®, is equal to the root subsystem generated by aq, ..., a,_2, 5 and
U (®1,R) - (U (1, R)U (P4, R))?Sp,(R) is a subset of the subgroup

( 3

1 0
Al B A\B

S E— € E(C,_1,R)
0 1 C \ D
cl D

7

of Sp,,,(R). But this subgroup is isomorphic to E(C,,_1, R) and so we know by induction
that

U™ (@1, R)- (UT(®1, R)U(P1, R))*Spy(R) C (U (P1, R)U (1, R))*Sp4(R)
holds and hence
e 4(1)X C (UF (D, R)U(®g, R))*(UF (@1, R)U (P4, R))*Spy(R) = X

holds. This finishes the case ¢ # «,_1.
If = a,_1 holds, then we decompose C,, into the subset ®; of roots whose expression
in terms of simple roots does not involve 8 and its complement ®, in C,,. Then as before,

we can observe
e-s(t)X C (Ut (P2, U (@2, R))* - [U™(P1, R) - (U (@1, R)U™ (1, R))*ISpy(R).
However, the root system ®; is equal to the root subsystem generated by aq,...,a, 1
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and [U~(®y, R) - (UT(®y, R)U (P4, R))?] is a subset of the subgroup

A\ 0,
— || A€ E(A,_1,R)
0, \ AT

of Sp,,,(R). But this subgroup is isomorphic to the subgroup F(A,_1, R) of SL,(R) Thus
by applying Proposition [5.1.3] and the fact that R has stable range 2, we obtain

U™ (91, R) - (U (®y, R)U (¥, R))2 C (UH(®1, AU (94, R))*H

for

H = | Ae SLQ(R)
In—2

AfT

But H is a subgroup of Sp,(R) and hence we obtain

es(t)X € (UT(®g, R)U(Po, R))* - [U (1, R) - (U (P4, R)U (@1, R))?] - Spy(R)
C (UH(®g, YU (D9, R))? - (UT(®1, RYU (P4, R))2- H - Spy(R) = X

( R)U(®1, R
C (Ut (®g, RYU (D9, R))? - (UT (D1, R)U (&1, R))? - Spy(R) = X.

This finishes the proof. 0

Remark 5.1.5. This is a result with quite a similar proof as the classical result [40, The-

orem 2.5| and we suspect it is well-known or obvious to experts in algebraic K-theory.

Note the following ohservation:
Lemma 5.1.6. Let R be a principal ideal domain. Then R has stable range at most 2.

The proof can be found in Appendix [C] In a similar fashion to Proposition [5.1.4] one

can prove the following two propositions:

Proposition 5.1.7. Let R be a principal ideal domain such that SLo(R) = G(Ay, R) is
generated by root elements. Further let {«, B,7,0,€,¢} be a system of simple, positive

roots such that the corresponding Dynkin diagram has the following form
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Then
E(Es, R) = (U*(Es, R)U™ (Es, R))*G(R)

holds.
and:

Proposition 5.1.8. Let R be a commutative ring with 1 and N € N such that

G(A,R) = E(A,R) = (U (A, R) U (A, R)™,

G(A1,R) = E(A,R) =U (A, R)(U" (A1, R)U (A1, R))Y
G(A1, R) = E(A,R) = (UY (A, R) U (A1, R))"U" (A1, R)
holds. Then
E(®,R) = (UN(®, R)\U (¥, R))V,
E(®,R) =U(®,R)(UT(®, R)U(®,R))N

E(®,R)= (U (®,R)U(®,R)NUT(®, R)

respectively holds for all irreducible root systems ®. In particular,
E(®,R) = (UT(®,R)U (D, R))*

holds for R a ring of stable range 1.

This corollary is mainly useful for semi-local rings as seen in the next section. Next,
we give a more detailed analysis of the asymptotics of bounded generation for SL, and
SPpy,- First, recall the following word norm from Definition [2.2.2¢

Definition 5.1.9. Let R be a commutative ring with 1 and ® an irreducible root system
such that G(®, R) is generated by root elements. Then define the set

ELg := {Aey()A ' |t € R, € D, A € G(P, R)}
and define the word norm || - [|g,, : G(®, R) — Ny as [[1||gL, := 0 and as
||X||ELQ = mln{n € N|3A1, . ,An € ELQ X = Al H An}

for X # 1.

Having this norm, we can show:
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Proposition 5.1.10. Let R be a principal ideal domain and let n > 3.

1. If Spy(R) and Sp,,(R) are generated by its root elements and there is a K € N with
Sp4(R)|leL, < K,

then
[SP2n (R) Ly < 12(n —2) + K

2. If SL3(R) and SL,(R) are generated by its root elements and there is a K € N with
[SLs(R)|[pL, < K,

then
|SLy.(R)||eL, < 4(n—3)+ K.

Proof. We only deal with the case of Sp,,(R), because the statement for SL,(R) is the
content of |24, Proposition 6.20].

Considering Sp,(R) as a subgroup of Sp,,(R) as done in Proposition we first
prove by induction that:

Claim 5.1.10.1. For each A € UT(C,, R) there is an A’ € UT(Ca, R) with || A Al|gr, <
3(n—2) forn > 2.

First, the claim is clear for n = 2.
Let A € UT(C,, R) be given. Then it has the form

1 a2 : © A1n | A1n41 : 0 Q12n
1 Q23 -+ Q2 | A2 n+1 : 0 A29n
I - Jagpt . <+ ason
1 Qpon+1 : 0 Qpon
A=
1
—ai2 1

On . —G2’3 1

—a1, —A2n 1
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Multiplying A with the matrix

T := (IQn - a1,2(€1,2 - €n+2,n+1)) : (IQn - CL1,3(€1,3 - €n+3,n+1)) te (]zn - al,n(€1,n - €2n,n+1>)

1 —G12 —G13 -+ —A1p
1
1 0,
1
1
12 1
On a3 1
a1n 1

from the right yields an element B of U (C,,, R) with the first n entries of the first row
of B being 0, except for the (1, 1)-entry, which is 1. However, according to the proof of
Lemma [4.1.4] there is a matrix D € Sp,, (R) of the form

1
D’ On

On D/—T

for D' € SL,,_1(R) such that the first column of DT? D~! has the form
(1,t,0,...,0)"

for t = ged(—ay 2, —ay3, ..., —ai,). However, due to the form of T7 and D, this implies
that DTTD™ = I, + t(e21 — €ny1.n12) and hence

DI'TD T =1,, + t(e12 — ent2,n+1)

holds. This implies ||T'[|gr, < 1.
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Then B = A - T has the form

10 - - 0 |bipm : © 0 bion
1 bas - bap | bantr : < baoy
1
bomst  © - buon
1 | byt . © o bpon
B =
1
0 1
Oy 0 —bo3 1
0  —bap 1

Next, multiplying B with

S IZ(IQn - b1,n+1€1,n+1) : (12n - bl,n+2(61,n+2 + 62,n+1)) : (IQn - bl,n+3(el,n+3 + 63,n+1))

o (Ion, — bron(€12n + €nnt1))

_bl,nJrl _bl,n+2 _bl,n+3 _b1,2n
_bl,n—i-?
_bl,n+3
I,
= Onfl
_b1,2n
On [n

from the right yields an element C' € U*(C,,, R) whose first row is
(1,0,...,0).
But applying the proof of Lemma 4.1.10, we can find a matrix of the form

1
0y,
El

On E/—T

for E' € SL,,_1(R) such that the first column of ESTE~! has the form

(1,0,...,0, —b1ns1,8,...,0)"
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for s = ged(b1nt2, b1m43, - - -, b12,). However, due to the form of ST and E, this implies
that ESTE™! = (I, — bini1€ni11) - (Ton + S(€ns12 + €nio1)) and hence

ET'SET = (Ion — bipr1€1041) - (Lon + S(€1,042 + €2.041))

holds. This implies that ||T||g, < 2.
But note that C' must be an element of the subgroup U*(C,,_1, R) of Ut (C,,, R), if its

first row is

This yields by induction that there is a C" € Ut (Cy, R) with
IC"'ClpL, < 3(n—1—2) =3(n—3)
holds. Hence setting A’ as C’, one obtains from C' = AT'S that

A Alprg = [0 CS T gy < 10" Cllerg + 1T leLo + 1SeL
<3(n—-3)+3=3(n—2).

Thus the claim holds for all n > 2. Further, Proposition yields that
Span(R) = (U (Cr, R)U™(Cr, R))?Spy(R)

for all n > 2. Let A € Sp,, (R) be given. Hence there are u,uy € UT(C,, R),u;,u; €
U (C,, R) as well as Z € Sp,(R) with

— ot =t
A=ujujuzu, Z

But U*(C,, R) and U~ (C,,, R) are conjugate in Sp,, (R). Hence applying the claim of the
first part of the proof to the uj,u,us,u; yields X1, Xo,Y1,Ys € Sp,, (R) with

1 XillELg s [[XallELg, 1Y1llELG s [|Y2llEL, < 3( —2)
and v, vy € UT(Cy, R) and v ,v, € U (Cy, R) such that

+ ot + o7 — — =
uy = vy X1,Uy = vy Xo,uy =0y Y1,Uu; =0, Ys.
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But this implies

A=ufuiuzuy; Z = (v X1) - (0p Y1) - (v3 Xo) - (07 Y2)Z
= (o X1(v)7Y) - (v vy Yi(of vy ) 7Y - (v oy vf Xa(vf vy o))
- (vf vy vF vy Xo(vf vy vz vy )7 - (vfugvivy) - Z

= (G- (T G (BT () - 2
But (v{vy vy vy )+ Z is an element of Sp,(R) and hence
[(vi vy v3v5) - Zlprg < K
holds. This implies

vy vivy vi vy vy v vy v3 vy 4= —
[AlleL, = [I(X1) - (Y72 ) - (X, ) - (Yy ) - (v vy v3 vy ) - Zl|eL,
< [ X1]leL, + MilleL, + 1 X2lleL, + [1YalleL, + |0 vz 03 03) - Z|gL,
<4%x3x(n—2)+ K =12(n —2) + K.

This yields the statement of the proposition for Sp,,(R). ]

5.2 Rings of stable range 1, semi-local rings and uni-

form boundedness

Proposition states that E(®, R) is boundedly generated by root elements for all
irreducible root systems ® and all rings of stable range at most 1 and that that each
element in F(®, R) can be written as a product of at most four upper and lower unipotent
elements. This was observed by Vavilov, Smolenski, Sury in [45, Theorem 1|. The main
example of rings of stable range 1 are semi-local rings, that is rings with only finitely

many maximal ideals:

Lemma 5.2.1. [5, Lemma 6.4, Corollary 6.5] Every semilocal ring, that is each ring with
only finitely many maximal ideals has stable range 1. So also each field has stable range
1.

Note:

Proposition 5.2.2. [3, Corollary 2.4] Let R be a semi-local ring. Then for all irreducible

root systems ® of rank greater than one, the group G(®, R) is generated by root elements.
This implies together with Proposition [5.1.8}

Proposition 5.2.3. Let R be a semilocal ring and ® a root system. Then the group

G(®, R) is boundedly generated by root elements.
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Hence the strong boundedness theorems can be applied to G(®, R). For semi-local
rings R, the group G(®, R) is in fact uniformly bounded. First, this can be seen quite
abstractly:

Theorem 5.2.4. Let R be a commutative, semilocal ring with 1 and let ® an irreducible
root system of rank at least 2. Furthermore, assume if ® = Cy or Gy that (R : 2R) < oo
holds. Then G(®, R) is uniformly bounded.

Proof. The strategy is to find a constant K € N such that each finite normally generating
subset S of G := G(®, R) has a subset S with |S| < K such that S is also a normally gen-
erating subset of G(®, R). Then Proposition with Theorem and Theorem [3.2.5]

respectively yield the claim, because
IG(@, R)||s < [IG(®, R)||s < C(®, R)|S| < C(®, R)K

and so uniform boundedness for G(®, R) holds.

Assume R has precisely ¢ maximal ideals. Let S be a finite set of normal generators
of G(®, R). Corollary implies II(S) = (. But according to Lemma [3.0.2] we have
II(Ty UTy) = II(Ty) N1I(T3) for all 71, 7> C G(®, R). This implies that if there are only
g maximal ideals in R, then already some subset S’ of S with |S’| < ¢ has the property
Nics H(A) = 0. Hence in case ® # C; or G, Corollary tells us that S’ is already a
normally generating subset of G(®, R). This finishes the case ® # Cy, Gs.

Next, we do the case & = Cy or Go. We have (R : 2R) < oo by assumption and hence
Lemma implies for Ng, that the group G/Ng is finite. The set S normally generates
the group G and hence the image of S in GG/Ng normally generates G/Ng and so we can
pick a subset S” C S with at most M := |G/Ng| elements such that the image of S” in
G'/N normally generates GG/Ng. Hence considering the set S := S’ U S”, we have

IS| < |5 |+ 9" <q+ M

and the upper bound ¢ + M clearly does not depend on S. Corollary implies that S

is a normally generating set of G(®, R). Thus we are done. [

We did give explicit values for L(®) for some @ in case of principal ideal domains, so

we obtain:

Corollary 5.2.5. Let R be a semi-local ring and a principal ideal domain with at most q

distinct mazximal ideals. Further let n > 3 and k € N be given.
1. Ag(SL,(R)) < 12(n — 1) min{q, k(n + 1)}

2. Ap(Spy, (R)) < 768(3n — 2) min{q, (5n + 1)k},
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Proof. The statement for SL,(R) is the content of |24, Theorem 6.3]. For Sp,,(R) let
S = {Ay,..., Ay} be a normal generating set of Sp,,(R). For 1 < i < k, let I(A4;) C
es(A;,64(145n)) be the ideal given by Theorem [4.1.3|with V(I(4;)) C II({4;}). However
Corollary yields V(I(Ay) + -+ 4+ I(Ax)) € TI(S) = 0 and so no maximal ideal can
contain the ideal I(A;) +---+ I(Ag). Thus Zle I(A;) = R and so

R = £,(A, 64k(5n + 1)) (5.3)

According to Corollary[4.1.18 each of the [(A;) is a sum of Tn+1ideals J;(4;), ..., Jri1(Ai),

each of which is contained in e4(A;,64). Hence

holds. Next, let m be one of the maximal ideals of R. Clearly not all of the ideals J;(A;)
can be contained in m. Hence there are i(m) € {1,...,k} and j(m) € {1,...,7n + 1}
with

Tiom) (Aigm)) & M.

But this implies that

> Ti(m) (Aim))

m maximal ideal in R
cannot be contained in any maximal ideal and thus must be the entire ring R. But this
implies

R = e4(A, 64q) (5.4)
Summarizing (5.3) and (5.4) yields

R =¢4(A,64min{q, k(5n + 1)) (5.5)

holds. But then similar to the proof of Proposition [3.1.3] one can show that all root
elements in Sp,,,(R) are contained in Bg(3+64 min{q, k(5n+1)}) = Bg(192 min{q, k(5n+
1)}) and so are all elements in ELg. Thus

|ELglls < 192min{g, k(5n + 1)} (5.6)
On the other hand, as R is semi-local and hence of stable range 1, one has

Spy(R) = UT(Cy, R)U(Cq, R)UT(Co, R)U(Cy, R)
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according to Proposition [5.1.8] and hence
1Sp4(B)l[pLg = 4 [|UT(Co, R)l[er, = 16
holds. Thus Proposition yields
1SPa, (R)[|EL, < 12(n —2) + 16 = 12n — 8.
This bound together with implies

1SP2n (R)lls < [I1Sp2n (B |leLg - [ELells < (120 = 8) - 192min{g, (5n + 1)k}
= 768(3n — 2) min{q, (5n + 1)k}.

This finishes the proof for Sp,,(R). O

Remark 5.2.6. One could improve the bound on |[Sp,, (R)| gL, further by observing that
each element of the form ufuyuju; can be rewritten as the product (up)™ (ufud)uy,
and hence [|Spy, (R)|eL, < 3[[UT(Cy, R)||eL,, holds and thus it suffices to give bounds on

|UT(Cy, R)||EL,, which can be done in a similar way as in the proof of Proposition [5.1.10}

In this context, we also prove the following more explicit version of Theorem in

a special case where we can drop the assumption of R being a principal ideal domain:
Theorem 5.2.7. Let R be a local ring and n > 3. Then A (SL,(R)) < 24(2n — 3) holds.

Proof. Let m be the unique maximal ideal of R. Further, let S be a normal generating
set of SL,(R) and hence II(S) = @ holds according to Corollary [3.2.8 But R has only
one maximal ideal and so there must be at least one element A(S) € S such that already
II({A(S)}) = 0 holds. Hence using Corollary [3.2.8 we may assume that S = {A(S)}.
For brevity write A := (a;;) := A(S) and so we only have to give an upper bound on
the diameter ||SL,(R)||4. To this end, we distinguish two cases, first that there is no
off-diagonal entry of A which is not an element of m and second that there is one. In
the first case, there must be two 1 < k,l < n with ag; Z a; mod m, because otherwise
Tm(A) would be scalar, which would imply TI({A}) = {m}, which is not possible. After
conjugation with possible Weyl-group elements, we may assume k£ = 1 and [ = 2. Then

setting a;; := a;; + m € R/m, we obtain
T (A, In + €12)) = L, + (agan™" — 1)eqa.

This implies that the (1,2)-entry of (A, I, 4+ ej2) is not an element of m. Hence in both
cases, we may assume that there is an element B = (b;;) € Ba(2) with an off-diagonal

entry that is not an element of m. Again after conjugation, we may assume that this entry

128



of B, which is not an element of m is the (2, 1)-entry of B. In particular, the (2, 1)-entry
of B is a unit ¢ in the ring R. But this in turn implies that

C = ([n - t_lbnlen,2)3<[n + ZS_lblnen,Q)

still has the (2, 1)-entry equal to ¢, but also has the (n, 1)-entry equal to 0.
Next, let D = (¢;;) be the inverse of C. Again, there must be an off-diagonal entry d,,,
of C such that d,, is not an element of m, because otherwise m,,(C) and 7,,(D) would

both be diagonal, which we know is not the case. Then [24] Lemma 6.7] implies that
E = ((C, I+ e1), In+ €yn) = I, + dyyCeny,.

Note, that E is an element of B4(4) and further observe that the (2, n)-entry of E' is d,t.
This finally implies for x € R arbitrary that

(I, + ast_ld;]lelg, E) =1, + xey,

is an element of B4(8). In particular, this implies that R = (A, 8) and so ||[ELg||a < 8.
But R is local and hence has stable range 1, so Proposition implies

SL.(R) = (U*(Ap_y, YU (An_1, R))%.

So for X € SL,(R) arbitrary, there are u,uj € UT(A,_1, R) and uj ,u; € U (A4,_1, R)
such that X = ufu]uju;. Hence we obtain
Futyug

X = ufupudur = (uy)" (ufugug

and so as the upper and lower unipotent groups are conjugate to each other, we obtain
from ||ELQ||A S 8 that

X4 < 3[IUT (An-1, B)lla < 3||ELglla - [IUT (An—y, B)lleL, < 24U (A1, B)lEL,-

Thus it suffices to give an upper bound on ||[U*(A,_1, R)|gL,, in order to give an upper
bound on ||SL,,(R)|| 4.

To this end we prove by induction on n > 2 that
|U*(An—1, R)|leL, < 2n — 3.

First, observe that the case of n = 2 is clear. For the induction step observe first that for
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U = (uij) € UT(A,_1, R), one obtains that
U :=U- (In - U12612) : (-[n - U13€13) Tt (In - Ulneln)

is an element of a subgroup of U'(A,,_1, R) isomorphic to UT(A,,_», R). Thus by induction,

we obtain ||U’||gL, < 2(n — 1) — 3 = 2n — 5. Next, consider the element

I —upp —uwiz - —ui,
1 0 : 0
T .= (In - U12€12) : (-[n - U13€13) T (In - ulneln) =
1
We distinguish two cases now: The first case is that one of the wuys,...,uy, is not an

element of m and the second one is that they all are elements of m. In the first case, we
may by conjugating with elements of the Weyl group assume that w5 is this element. In

the second case, observe that
T = I+ e2)T = (I + (1 — wia)es2) - (In — uizers) - - (I — Uinérn)

has (1,2)-entry equal to 1 — u;o. However as us is assumed to be an element of m, the
element 1 — w15 cannot be an element of m. Thus up to multiplication with a single root
element, we may assume in either case that the (1,2)-entry of 7" is not an element of m
and we call this unit s € R. But then observe further that

(In — s~ uigeas) -+ (In — s uaneon)T(In + s uanean) -+ (In + s uigens) = I + sera.
But this implies that in either of the two cases ||T'||gr, < 2 and so we obtain
|U]leL, = ||U,T_1||ELQ < | U'lgLg + 1T leL, < 2n —542=2n—3.

But this finishes the induction and so we obtain ||[U™ (A, R)||eL, < 2n—3. This inequality
together with the already seen inequality

ISLi(R)[[a < 24U (An, R)lir,

implies the claim of the theorem. m

Remark 5.2.8. One can generalize this theorem to the case of semi-local rings R with as

well, but this would be more involved.

We also obtain the following:
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Theorem 5.2.9. Let R be a commutative ring with 1 of stable range 1 and ® an irreducible
root system of rank at least 2. If ® = Cy or Gy assume further that (R : 2R) < 0o. Then
for the elementary subgroup E(®, R) of G(®, R), there is a constant C(®, R) such that

Ap(E(®, R)) < C(P, R)k

for all k € N.

Proof. We want to show a version of Theorem and Theorem that speak about
E(®, R) instead of G(®, R). This can be done by following the same arguments essentially.
The only difference in the proofs are in the proofs of Theorem Theorem and
Theorem [3.2.2] These differences are that in the sentences of the theories 7y, one must
quantify over all elements of E(®, R), which cannot be defined in a straight forward
manner instead of elements of G(®, R). However, this issue can be resolved by breaking
up the sentences called 6, involved in the proofs further in such a way that the conjugating
elements X7,..., X, appearing in the 6, are only allowed to be products of at most r root
elements. The rest of the proof then goes through in essentially the same way using
that R being of stable range 1 implies (U (®, R)U ™ (®, R))? = E(®, R) for such rings by
Proposition and hence F(®, R) is boundedly generated by root elements. O

5.3 Bounded generation and strong boundedness in pos-

itive characteristic

The main problem in positive characteristic is that there are no bounded generation by
root element results known to us for these class of rings except for a result by Nica [34]
stating bounded generation of SL, (F[T]) for F a finite field and n > 3. We suspect that
the following holds:

Conjecture 5.3.1. Let ® be an irreducible root system of rank at least 2, K a global field
and R a ring of S-algebraic integers in K. Then G(®, R) is boundedly generated by root

elements.

Another problem occurs in lower ranks, namely for ® = C5 or G5 : We often assume
for those ® that R/2R is finite. But this is not generally the case for char(R) = 2, say
R = F,[T]. However, we still believe that strong boundedness is the norm for these rings
and to illustrate this point we prove the following version of Theorem in positive

characteristic.

Theorem 5.3.2. Let IF be a finite field, P a prime ideal in F|T| and R the localization of
F[T] at P. Then Sp,(R) is uniformly bounded.
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To show this, we need the following proposition:

Proposition 5.3.3. Let P be a prime ideal of F[T| with F a finite field of characteristic
2 and let R be the localization of F[T| at P. Further let N be the normal subgroup of
Sp4(R) generated by

A = gats(1)€2a+5(1).

Further let || - ||a : Spy(R) — No U {+o0} be the conjugation generated word norm on
Sp,(R) defined as in Defintion |2.0.1, Then

1. N is a finite index subgroup of Spy(R) and
2. the norm || - |4 has finite diameter on N.

Proof. First, we will show that
I:=(z— 2|z € R) Ce(A, ¢,24)

for all ¢ € C5 and second, we will deduce the two statements of the proposition from this.

First, observe for any x € R that

Ba(2) 3 (cars(Dezars(1), -a()) = £al@)ezars(®). (5.7)
This yields that

Ba(2) ngwawgea(x)52a+5($)w5_1w;1wﬁ_1
= WaWaCa+s(T)e2a+s(2) Wy w5

= wpearp(@)es(v)wy’ = ea(a)e_p(2).
On the other hand (5.7)) implies for z,y € R that

()

Ba(4) 3 (a(¥)e2018(Y): € (048 (®)) = (€2018(y), (ot ) (¥)) " p(229)

~ ea(ry)e—s(2%y).

But this implies then that

e_p(a’y —ay) = e_p(@®y)e_p(zy) = (e_p(z?y)ealzy)) - (calzy)e_s(zy)) € Ba(6).

This implies in particular that the ideal (x? — x|z € R) is contained in £(A, 3,6) and
hence according to Lemma [3.4.2] the inclusion I = (z? — z|z € R) C £(A, ¢, 24) holds for
all ¢ € (5. Next, we will show that I has finite index in R. There are two possible cases:
Either P has the property F[T]/P = Fy or not. If F[T|/P # Fs, then there is an element
x € F[T] such that 2(1—x) is not an element of P C F[T] and hence x(1—z) is invertible in
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R. Thus in this case I is the entire ring R. So assume the other case, that is F[T]/P = F,.
This immediately implies that F = Fy and P = T - Fo[T] or P = (T — 1) - Fo[T]. Wlog
we assume that P = T - Fo[T|. But observe, that 72 — T = T(T — 1) is an element of I
and hence as T'— 1 is a unit in R, this implies that 7" is an element of /. This yields that
R/I = TF,. So in either case I has finite index in R.

Next, pick a set X C R with of coset representatives of I in R. According to Propo-
sition Sp4(R) is boundedly generated by root elements, because R is local. So let
K € N be given such that each element in Sp,(R) can be written as a product of at
most K root elements. Let X € Sp,(R) be given and choose ay,...,ax € R as well as
O1,-..,0x € Cy such that

K
X = H €4, (a;).
i=1

Each element ¢« € R can be written as a = b+ x for b € I and x € X. So choose
x1,...,0x € X and by,...,bg € I with a; = x; + b; for all i = 1,..., K. Then, obtain

X = [T ooz (@) = 2 0n) - [[[ea ™ O] g (20) o] (5:8)

But we already know that all the elements
Eo1(b1), {£5, (b)) o Gy g
are elements of NV and there are only finitely many possibilities for the product

g (T1) - ey (Tx).-

Hence N has finite index in Sp,(R). On the other hand, if X isin N, then g4, (1) - - - €4 (Tx)
is also an element of N. But there are only finitely many possibilities for €4, (z1) - - - €4, (T k),
so there is an M € N such that |[eg, (21) -4, (2k)|[a < M holds for all the possible
products e4,(21) - - - €4 (Tx) € N. But we already know that all the elements

€4y (bl), {%i(bi)%l(11)"'5¢i71(wi_1)}2gi§K

are elements of B4(18). Hence (5.8) implies

K
1X [ = llegy (br) - [ [ g (b)7r O 2ona @] ey (1) - e ()]l 4 < 18K + M
1=2

and this finishes the proof. O

Having this proposition, we can now prove Theorem [5.3.2
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Proof. There are two possible cases to consider here. First, the case that char(F) > 3
holds and second that char(F) = 2. The first case is a direct consequence of Theorem [5.2.4;
The ring R is local and |R/2R| = 1 holds, because 2 is a unit in R. So let us assume
that char(IF) = 2 and let S C Sp,(R) be a finite set of normal generators. To prove this
theorem, we will proceed in four steps similar to the proof of Theorem [5.2.4 First, we

will show that there is a natural number K independent of R such that

leats(Dezats(1)lls < K|S

holds. Second, we will use the second part of Proposition to bound the normal
subgroup N generated by €,45(1)e24+5(1) with respect to the norm || - ||s. Third, we will
show that Sp,(R) is boundedly generated by root elements. Fourth, we will conclude from
the first part of Proposition [5.3.3]and an argument similar to the proof of Theorem [3.2.5]
that Sp,(R) is strongly bounded. Then last, we will conclude the uniform boundedness
of Sp,(R) from the fact that R is a local ring.

For the first point, let X € Sp,(R),z € R and 4, j distinct elements of {1,...,4} be
given. Then observe that Theorem and char(R) = 2, implies that

Ears(y i ;)e245(y" 77 ;) € ((X)).

Using a first-order compactness argument similar to the one in the proof of Theorem [3.2.7]
one then proves the existence of a natural number K such that for all y € R and X €
Sp4(R), one has

leass (P2} )esars(y’al;)|x < K

for all 7, j distinct elements of {1,...,4}. Possibly enlarging K, one can also show for all
y € R and X € Sp,(R), that

lears(V? (@i — 24)")e20rs (Y (zi; — 255)%)|Ix < K

for all 4, j distinct elements of {1,..., 4}.

Next, observe that .S is a normal generating set and hence Lemmaimplies I(S) =
0. If there were a maximal ideal m containing »° ¢ 1(X), then 7, would map all elements
of X to scalar elements in Sp,(R/m), which are obviously central in Sp,(R/m). But this
would imply m € II(S) = (. This contradiction shows

Y IX)=R

XeSs

Thus there are elements

{24 Yxesusizsza C R
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with

X X
1= > yPep)+ Y 2 @i - )

1<i#j<4,X€ES 1<i£j<4,X€S

But remember that char(R) = 2 and hence Freshman’s dream implies

L=( Y i)+ > 5D @i — ).

1<i#j<4,X€eS 1<i£j<4,X€S

Thus, enlarging K, we obtain

Bs(KISD) 3] ] cars(W5)) 2% )erara((ys))2a2)]

1<i#5,X€S
X X
1T ears((50) (@i — 25))erass (25 )2 (w5 — 25)2)]
1<i#5,X€S
X X
=cars(( D I+ D D @ — 1))
1<i#5,X€S 1<i#5,X€S
X X
cerars(( Y WS+ (Y ()i — 25)?)
1<i#j,X€S 1<i#j,X€S
= carp(D)ezars(l).

This proves the first point. So we obtain

leats(Dezats(D)ls < K|S].

For the second point, note that the normal subgroup N generated by

A= cayp(1)e2a+5(1)

is bounded with respect to the norm || - |4 according to the second point of Proposi-

tion [5.3.3] Setting L(R) := || N 4, this implies

INlls < IN[la - [[Alls < LIR)K]S].

For the third point, remember that R is local and hence the bounded generation of

Sp,(R) by root elements follows from Proposition [5.2.3|

For the fourth point, observe that according to the first point of Proposition [5.3.3]
the normal subgroup N has finite index in Sp,(R) and Sp,(R) is boundedly generated by
root elements. Hence, if we replace in the proof of Theorem the subgroup N¢, by

N, we can find an M(R) € N such that

1Sp4(R)||s < M(R) + [|N]s
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and hence
ISps(R)|ls < M(R) + L(R)K|S]|.

Hence Sp,(R) is strongly bounded. To finish the proof of uniform boundedness, it
suffices to show that there is a natural number C(R) such that each normal generating
set S of R contains a normally generating subset S’ with |S’| < C(R). Note, that a set S

normally generates Sp,(R) precisely if it satisfies the following two conditions:
1. The group N is contained in the normal subgroup ((S)) generated by S and
2. the set S maps to a normal generating set of Sp,(R)/N.

However, the first condition is equivalent to £,45(1)e24+5(1) being an element of ((S)).
In the first point of the proof, we derived that £, 3(1)e2,+5(1) is an element of ((S)) solely
from II(S) = 0. But R is local and hence has only one maximal ideal. Hence II(S) = ()
can only hold, if there is at least one element X (S) € S with II({X(S)}) = 0. Hence the
normal subgroup generated by X (S) already contains €, 4(1)e20+5(1) and hence N.

For the second condition, observe that Sp,(R)/N is a finite group according to Propo-
sition Thus there are only finitely many normal generating sets of Sp,(R)/N and
consequently there is a natural number C1(R) such that each normal generating set S of
Sp4(R) has a finite subset S; with at most Cj(R) elements such that S; U N normally
generates Sp,(R).

But this implies that already 5" := Sy U {X(S)} normally generates Sp,(R) and that

|S’| < C1(R) + 1. Hence the proof is finished. O
Remark 5.3.4.
1. The proof is slightly more general than necessary for char(F) = 2, considering

the fact that R is a principal ideal domain and hence one could also use matrix
calculations as in Subsection [4.2]to show the first point of the proof of Theorem|[5.3.2]
However, we wanted to demonstrate that the first point is true for more general rings

of characteristic 2.

2. The ideal I in the proof of Proposition is commonly called the booleanizing
ideal of R, often denoted by 15(R), and it can be shown to always have finite index
in any ring global ring of S-algebraic integers R in a global field. Further, the proof
of Theorem [5.3.2 shows that the main problem in proving strong boundedness for
Sp4(R) is not that R might have characteristic 2, but rather whether Sp,(R) is

boundedly generated by root elements or not.
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Chapter 6
Rings of S-algebraic integers and orders

In this chapter, we talk about applications of our results Theorem [3.1.2Jand Theorem[3.2.5|
to rings of S-algebraic integers. In the first section, we prove strong boundedness for rings
R of S-algebraic integers by way of known bounded generation results for G(®, R) for
® # Cy and Go. In the second section, we provide explicit upper bounds for Ag(G) in
case of G = Sp,(R) in a special case and in the third section, we provide similar bounds
for Ap(G2(R)). In the fourth and fifth section, we speak about similar results by Morris

[30] and how to interpret them in terms of (strong) boundedness.

6.1 Bounded generation results for rings of S-algebraic
integers

First, recall the definition of S-algebraic integers:

Definition 6.1.1. |32] Chapter I, §11| Let K be a finite field extension of Q. Then let S
be a finite subset of the set V' of all valuations of K such that S contains all archimedean

valuations. Then the ring Og is defined as
Os:={aeK|VveV —-S:v(a) >0}

and Qg is called the ring of S-algebraic integers in K. Rings of the form Og are called

rings of S-algebraic integers.

Remember the word norm || - ||gr, from Definition [2.2.2] S-arithmetic Chevalley groups

are boundedly generated by root elements:

Theorem 6.1.2. [/2] Let ® be an irreducible root system of rank at least 2 and R a ring
of S-algebraic integers in a number field K. Then G(®, R) is boundedly generated by root

elements. More precisely, let K be a number field and

A = max{|{p| p a prime divisor of diSCI“K\QHa 1}
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be given. Then the following inequalities hold:
1. ||G(®, R)||gr < (68A + 14)'%>| for all © simply-laced,
2. ||G(®, R)||gr < (180A + 27)'%‘ for all ® non-simply-laced not equal to Gy and
3. [|Go(R) gL < 68A + 25.

Furthermore, if R is a principal ideal domain or A = 1, then the bounds can be improved
to

1. |G(®,R)|lgL < 63% for all ® simply-laced
2. |G(®, R)||gr < 159%>| for all ® non-simply-laced not equal to Gy and
8. ||Ga(R)|eL < 81.

Remark 6.1.3. This is not the bounded generation result as found in [42]. Instead it is
a summary of the result [42) Corollary 4| and |42, Proposition 1| for the first batch of
inequalities. The second batch of inequalities comes from applying possible improvements

as appearing in [I0] in the principal ideal domain-case and the A = 1-case.

Furthermore, all non-zero ideals [ in a ring R of S-algebraic integers have finite index.
So, rings R of S-algebraic integers in number fields have the property that G(®, R) is
boundedly generated by root elements for all irreducible ® of rank at least 2 and the
ideal 2R (and all other non-zero ideals) have finite index in R. Hence Theorem and
Theorem can be applied to the groups G(®, R). This gives us the following Theorem:

Theorem 6.1.4. Let R be a ring of S-algebraic integers in a number field and & an
irreducible root system of rank at least 2. Then there is a constant C(®, R) > 1 such that

Ar(G(®, R)) < C(P, R)k

holds for all k € N.

Furthermore, we can give some explicit bounds for strong boundedness as well. To
this end note the following bounded generation result for SLy(R) by Rapinchuk, Morgan
and Sury:

Theorem 6.1.5. [29, Theorem 1.1] Let R be a ring of S-algebraic integers with infinitely
many units. Then ||SLa(R)||gr < 9.

Using this result and Theorem we can provide some explicit values:
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Corollary 6.1.6. Let R be a ring of S-algebraic integers with class number one andn > 3.
Further set

135, if R is a quadratic imaginary ring of integers or 7

12, if R is neither of the above

A(R) =

Then Ag(Sps,(R)) < 192(1 + 5n)(12n + A(R))k holds for all k € N.

Proof. Let k € N be given. Then according to Theorem [3.1.2] the inequality
Ag(Spg, (1)) < 3Q(Cn, R) - L(Cy)k (6.1)

holds for L(C,) given as in Theorem and ||Spy, (R)|le, < Q(Cn, R). However,
according to Theorem |4.1.3] we can choose L(C,,) < 64(1 + 5n).
Next, we give upper bounds on ||Sp,(R)|/gL, depending on R. First, if R is a quadratic

imaginary ring of integers or Z, we have

1SP4(R)|leL, < [ISP4(R)||pr < 159.

according to Theorem [6.1.2]
On the other hand, if R is not a ring of quadratic imaginary integers or Z, then R has

infinitely many units according to [32, Corollary 11.7]. This implies ||SLo(R)| gr < 9 for
those rings by Theorem According to Proposition [5.1.8] this implies

Sp4(R) = (UT(Ca, R)U (Co, R))*U*(Ca, R) or Spy(R) = U~ (Ca, R)(UT(Cy, R)U (Cs, R))*.
But C5 has four positive roots and hence

ISp4(R)|leL, < [ISpa(R)[[er < 4% 9 = 36.
holds. Hence setting

A(R) 159, if R is a quadratic imaginary ring of integers or 7Z
. 36, if R is neither of the above

implies ||Spy(R)|ler, < A'(R) for all rings of S-algebraic integers with class number 1.
Proposition [5.1.10] implies

1SP2n (R)[lEL,y < 12(n —2) + [[Spa(R)[leLy < 12(n —2) + A'(R).
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But this together with and L(C,) < 64(1 + 5n) implies
Ag(Spy,(R)) <3Q(Chy R) - L(Co)k < (12n — 24 + A'(R)) - 192(5n + 1)k

and finishes the proof. O
Further, we can show the following:

Theorem 6.1.7. Let R be a ring of S-algebraic integers with class number one. Further
set

154, if R is a quadratic imaginary ring of integers or Z

117, if R is neither of the above

A(R) =

Then Ap(Eg(R)) < 120 - 60" A(R)k holds for all k € N.

Proof. Let k € N be given. Then according to Theorem |3.1.2] the inequality
Ar(Es(R)) < Q(Es, R) - L(Eg)k (6.2)

holds for L(C,,) given as in Theorem and ||Es(R)||eL, < Q(£s, R). However, ac-
cording to Proposition [4.4.6| we can choose L(Eg) < 120 - 60"
Next, we give upper bounds on || Es(R)||gL, depending on R. To this end note that

Proposition implies
Es(R) = (U™ (Es, R)U (Eg, R))*Ge(R)

Thus for each A € Fg(R), there are uf,uy € UT(Fs, R) and u; ,u; € U (Fg, R) as well
as Z € G.(R) such that A = ufujuguy Z. This implies

_ _ _ _ _ ot _
A=ujuiuiu; Z = (Uful (uf) 1) (ufu)uy Z = (up)™ - (ufuz )uy Z
and hence

—Nut _
[AlleLg = [1Cuy)™t - (ui"us Juy ZleL,
—\ut —_
< ()t g + i ug lleng + llug lleng + 121,

= [Jul leLg + llufud [|eL, + lug lleL, + 126, -

But U*(Eg, R) and U~ (Fg, R) are conjugate to one another and A was arbitrary, so this
implies

| Es(R)||eLy, < 3|[UT(Es, R)||gL, + |Ge(R)||ELq -

The root system FEg has 36 positive roots as can be for example seen in the proof of
Lemma in Appendix |C|and hence ||[U"(Eg, R)||gL, < 36 holds. On the other hand,
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G(R) is a subgroup of the group
H = (G(R), Gs(R))

The root subsystem of Fg spanned by € and ¢ is isomorphic to Ay and SL3(R) is generated
by root elements according to [42] Lemma 4|. Thus one can use Lemma and [41],
Chapter 8, p. 68, Lemma 49| to show that there is an epimorphism of SL3(R) onto H
with the property

EIQ(I‘) — 85(1’), E21(£C> — €_€<.T)

Egg(l') — 65(5L’), E32(ZE) — 6_5<J])

for all x € R. Using this epimorphism, the subgroup

(¢ e

of SL3(R) maps onto G¢(R). This is to say, that one can give an upper bound on
|Ge(R)||eL, by way of giving an upper bound on ||SLy(R)| gL, when considering SLy(RR)
as a subgroup of SL3(R). Now, we distinguish two cases. First, if R is a quadratic imag-
inary ring of integers or Z, then one can see reading the proof of [I0, Main Theorem|
that

ISLa(R) o, < 56.

On the other hand, if R is not a ring of quadratic imaginary integers or Z, then R has
infinitely many units according to [32, Corollary 11.7|. This implies |[SLao(R)/gL, < 9 for
those rings by Theorem [6.1.5] Thus setting

A'(R) = 56, if R is a quadratic imaginary ring of integers or Z
9, if R is neither of the above

implies ||Ge(R)||gL, < A'(R) and hence
[E6(R)l[eLg < 3% 36+ A'(R) = A(R)

holds. This together with (6.2) and L(Es) < 120 - 60%" finishes the proof. O

Remark 6.1.8. It is obviously possible to give upper bounds on ||U*(Es, R)||eL,, that are
better than the naive |[U"(Es, R)||gL, < 36. For example, one could consider the roots
that do not involve the simple root ¢ and the ones that do separately. Then one uses an
argument similar to the SL, (R)-case in Proposition to give better upper bounds

on the terms not involving ¢. However, as the explicit bounds for the Ejg-case are quite
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bad anyway, we decided against it.
Invoking Theorem [6.1.5] also allows a slight improvement of the upper bound in the
older result in |24, Corollary 6.2]:

Corollary 6.1.9. Let R be a ring of S-algebraic integers with infinitely many units, n > 3
and k € N. Then
Ap(SL,(R)) < (4n+1)(4n+ 4)k

holds.

Remark 6.1.10. The only rings R of S-algebraic integers that have finitely many units
and are principal ideal domains are Z and the rings of algebraic integers in the quadratic
number fields Q[v/D] for D = —1, -2, -3, =7, —11, —19, —43, —67, —163.

6.2 Explicit bounds for Sp,

Let R be a commutative ring with 1 such that (R : 2R) is finite. In this section G denotes
the group Sp,(R). Recall, that the set of positive roots in Cy is «, 5, +  and 2a +

with « short and simple and § long and simple. Further, recall the set:
Qc, = {Acy(22)A7 Yz € R, ¢ € Ca, A € Spy(R)}

as well as the group N, := (Qc,). Further let 7 : G — G/N¢, be the quotient map and
let k& be a natural number. Then recall that Theorem implies:

Ar(Spy(R)) < L(C2) K (Co, R)k + As(G/Ne,)

where
1. the constant L(Cs) is given as in Theorem or Theorem [3.2.1]
2. the constant K(Cy, R) is defined to be || N, g,

For principal ideal domains, an upper bound on the constant L(Cy) is already known
to us by Theorem Namely, L(C5) < 384 holds. So to give explicit upper bounds
on Ag(Sp,(R)), one must give upper bounds on A, (G/N¢,) and K(Cy, R). Determining
A (G/Ng,) is relatively easy, because we only have to determine the maximal possible
diameter of a conjugation generated word norm on some finite group of Lie-type or direct
products of such. On the other hand, giving an upper bound on K(Cy, R), is harder and

we will in fact only do it in a special case.
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6.2.1 Boundedness of the 2-congruence subgroup of Sp,(R)

Definition 6.2.1. Let R be a commutative ring with 1 such that the set of coset repre-
sentatives X of 2R in R can be chosen in such a way that each x € X — 2R is a unit in
R and 0,1 € X. Then R is called a 2R-pseudo-good ring.

Remark 6.2.2. If R is 2R-pseudo-good, then either R/2R is a field or 2 is a unit in R.
This is the case, because each element z in R/2R — {0} can be written as T = x + 2R
for some x € X a unit. But then ¥ is itself a unit and hence each non-zero element of
R/2R is a unit and so R is a field. On the other hand, if R/2R does not have non-zero

elements, than this implies that 1 is an element of 2R.
We note the following characterization for rings of S-algebraic integers in quadratic

number fields that are 2 R-pseudo-good:

Proposition 6.2.3. Let D be a square-free integer, R’ the ring of algebraic integers in
the number field Q[\/E] and S a finite set of non zero prime ideals in R'. Define

R:={a/bl a € R';b € R — {0}, { prime divisors of bR'} C S}.

Then R is 2R—pseudo-good if and only if at least one of the following conditions hold
1. The set S contains a prime-divisor of 2R or
2. D=5mod8 and D >0 or
3. D=5 mod8 and S # 0 or
4. D =-=-3.

The proof for this Proposition can be found in Appendix [C| Further define for a

2R-pseudo-good ring R with the corresponding set of coset representatives X, the sets
Br = {e20+5(1)carp(2)ep(x3)ea(a) ha(t)hp(s)| t,s € X N R*, 21,29, 23,24 € X }

Also recall that the Weyl group W (C5) is generated by the set F' := {w,,ws}. To deter-

mine K (Cy, R), we prove the following proposition.

Proposition 6.2.4. Let R be a 2R-pseudo-good ring, wy = Sgl) e slgll) and wy = s§2) e s,(i)
(2

elements of W(Cy) with sgl), . .75211)75(12), . .,st) elements of F and lp(w) = k1 and
lp(we) = kg. Then up to multiplication by lp(wy) elements of Qc,, each element of

(B(Cy, R) w1 B(Cs, R)) - (B(Cy, R)wsB(Cs, R)) is an element of B(Cy, R)wB(Cy, R) for

w some subword of the (possibly non-minimal) expression (sgl), e s,(:l), s?), cee 32,22)).
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This proposition gives an upper bound on K (Cs, R) as follows in case 2 is not a unit in
R. Note that according to bounded generation by root elements, we can by grouping ele-
ments of U'(Cy, R) and U~ (Cy, R) together and potentially conjugate by wq := (waws)?,
the longest element in W (Cy), find a J € N, such that each A € Sp,(R) can be written as

for all u; elements of UT(Cy, R) and all u; elements of U~ (Cy, R). But each element
wy 'u; wp is a product of root elements of positive roots in Cy and hence an element of
B(Cy, R). But then

ufu; = (ufwe) (wy uy wo)wy ' € (B(Cy, R)wy) - (B(Cy, R)wg) C (B(Ca, R)wyB(Csy, R))?.

holds for all i. This implies A € (B(Cy, R)woB(Cy, R))?’.

But [(wo) = 4 holds, so according to Proposition the matrix A can be written as
a product bjwb), for b € B(Cy, R) and w € W (Cy) after multiplication by (2J—1)lp(wp) <
4(2J — 1) elements of Q¢,. But each element of B(Cy, R)wB(Cs, R) is conjugate to an
element of B(Cy, R)w. Observe that each element A of B(Cy, R) has the form

€20+8(t2a+8)€a+p(tars)es(ta)calta) ha(sa)hs(ss)

for ton18,tats 15, ta € R and s,,s3 € R*. Hence after multiplication with 4 elements
of Qc,, we may assume that ty,13,t0+8,18,ta € R are elements of the set X of coset

representatives of 2R in R instead. Furthermore,

hoc(sa) = wa(sa)wa

holds and w4 (Sa) = €a(8a)e—a(—551)ea(54). Note, that all elements of X — {0} are units

in R and so we can consider the set
Y = {-22z e X —-{0}}u{0}.

One easily checks that this set Y is also a set of coset representatives of 2R in R. Thus
after multiplication with 3 elements of Q)¢,, we may assume that s, is an element of
X — {0}. Similarly, we may assume after multiplication by 3 elements of Q¢, that sg is
an element of X — {0}. So each element of B(Chy, R)w agrees with an element of Brw
after multiplication by 4 + 3 + 3 = 10 elements of Q¢,.

To summarize: Up to multiplication by up to 4(2J —1) 410 = 8.J + 6 elements of Q,,

each element A of Sp,(R) can be rewritten as an element of Brw for some w € W(Cy).
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Next, observe that N¢, is contained in ker(meg @ Spy(R) — Spy(R/2R)) := He,. We are
going to show that Brw N He, # () implies w = Iy and Brw N He, = {14}. Together, this
implies

K(CZ>R) = ||NCQ||QC’2 < 8J+6.

To show that Brw N He, # 0 implies w = I, and Brw N He, = {I,}, assume there
is an A = bw € Brw N N¢, for some w € W(Cy). Observe that myr(A) = I,. But
mar(b) is an element of B(R/2R, Cy) of Sp,(R/2R). Further slightly abusing notation, we
obtain myg(w) = w and hence mg(A) is an element of B(R/2R, Cy)w. But 2 is assumed
to not be a unit in R and so the ring R/2R is a field. Hence by the uniqueness of
the Bruhat-decomposition for Sp,(R/2R) [41l Chapter 3, p. 26, Theorem 4’|, we obtain
mor(b) = w = 1. But according to the definition of B and remembering that X is a set
of coset-representatives of 2R in R, this implies b € {h,(t)hs(s)| t,s € X N R*}. So there
are t,s € X N R* with

t 0 0
0 st7'] 0
A=h,(t)hg(s) =
(Ohals) = | =
0 0 0 s

But mor(A) = I, and hence t = 1 mod 2R. But 1 € X and so t = 1. Then s = 1 follows

the same way. Hence A = I;. This implies:

Proposition 6.2.5. Let R be a 2R-pseudo-good ring such that 2 is not a unit and let J € N
be given such that each A € Sp,(R) can be written as an element of (UT(Cy, R)U(Cy, R))’
or (U= (Cy, RYUT(Cy, R))?. Then K(Cy, R) < 8J + 6 holds.

Further, the proof implies the following:

Corollary 6.2.6. Let R be a 2R-pseudo-good ring of S-algebraic integers. Then N¢, =
ker(mop : Spy(R) — Spy(R/2R)) holds.

Remark 6.2.7. Milnor’s, Serre’s and Bass’ solution for the Congruence subgroup problem
[6, Theorem 3.6, Corollary 12.5] yields

Ne, = ker (mar : Spy(R) — Sp,(R/2R)) .

more generally for all rings of S-algebraic integers.

To prove Proposition we need:

Lemma 6.2.8. Let R be a 2R-pseudo-good ring. Then up to multiplication by an element
of Qc,, we have

(B(Cy, R)waB(Ca, R)) - (B(Cy, RYwaB(Cy, R)) € B(Cy, R) U (B(Cy, R)waB(Ca, R)) .
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The same holds for 5 instead of a.

Proof. Let by, by, by, by, € B(Cy, R) be given. Note that we may write bob)| as
bob| = enl(a)up_oh

for a € R, €2a48(b)ea+s(c)ep(d) = up_(ay for b,c,d € R and h € {hq(t)hs(s)| t,s € R*}.
This implies:

b1Wabobi wably = biwaen (a)up_ghwably = bie_o(Ea)we[up_o(—h)|w, ).

1 1

Next, wq|up_o(—h)Jw," is an element of B(Cy, R), because w,up_ow, " is a product

1

of root elements associated to positive roots in Cy and w,(—h)w,' is an element of

{ha(t)hs(s)| t,s € R*} as required. Thus bjw,bobjw,by € B(Cy, R)e_o(£a)B(Cy, R)
holds.

There are two possible cases now. Either a is an element of 2R, then we are done
after multiplying with one element of Q¢,. On the other hand, if a ¢ 2R holds, then as

R is 2R-pseudo-good, there is a unit € R such that a = —2~! mod 2R. Hence after

1

multiplying with one element of ()¢,, we may assume a = —z~" and so we obtain

e-ala) = ca(—2)(ca(r)e-a(~27")ea(®))ea( 1)

= co(—2)wa(2)en(—2) = e0(—2)ha(T)Waen(—1).

But eo(—z)ho(z) and e,(—x) are elements of B(Chy, R), so £_,(a) is an element of
B(Cy, R)w,B(Cy, R). Hence

blwabgbg_wab; < B(CQ, R)s,a(j:a)B(C'g, R) C B(Cg, R) . (B(CQ, R)?UQB<CQ, R)) . B(Cg, R)
= B(CQ, R)U)QB(CQ, R)

holds after multiplication with up to one element of Q¢,. O

Next, we are going to prove the Proposition [6.2.4}

Proof. Slightly abusing notation we set T'(wy, ws) 1= (sgl), . ,s,ill), s§2), e 51(32))- We will

show first that

(B(Ch, R)w,B(Ca, R)) - (B(Cy, R)wsB(Cy, R)) C U B(Cy, RywB(Cy, R)

w subword of T (w1 ,w2)

holds up to multiplication by [g(ws) elements of Q¢, by induction on [g(wy).
For lp(we) = 0, we obtain B(Csy, R)wyB(Cy, R) = B(Cy, R) and hence the claim is

obvious. So let wy € W(Cy) be given and assume by induction that the claim holds for
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each subword of (552), . ,s,(fz)). Further assume that without loss of generality we = whw,

and lp(wq) = lp(wh) + 1. Then by induction hypothesis

(B(CQ, R)U)lB(OQ, R)) . (B(CQ, R)wgB(CQ, R))
= (B(Cy, R)w1 B(Cy, R)) - (B(Cy, R)ws) - (wa B(C2, R))

C U B(Cy, R)wB(Cy, R)| - waB(Cs, R)
w subword of T'(w1,w})
= U (B(Cy, R)wB(Cy, R) - wa B(Ca, R))

w subword of T'(w1,w})

holds up to multiplication by [g(w}) elements of (). Hence it suffices to show the claim in
the special case wy = w,. We distinguish two cases: First [p(wjw,) > [p(w;) and second
lp(wiwy) < lp(wy).
In the first case, it suffices to show that w, B(Cs, R)w, C B(Cs, R)wiw,B(Cs, R). To
see this let
b=cea(a)up_fayh € B(Cy, R)

be given with a € R, €9444(b)ea+s(c)ep(d) = up_foy forb,c,d € Rand h € {ho(t)hs(s)|t,s €
R*}. Note that

1

wigq(a)w) " = €, (a)(£a).

Yet according to [41, Appendix, p. 151, (19)Lemma], the inequality [r(wiw,) > lp(w;)
implies that the root w;(a) is positive root. Thus wie,(a)w; € B(Cy, R). On the other

hand, similar to the proof of the previous lemma, w;luP_{a}hwa is also an element of
B(Cy, R). Hence we obtain

wibw, = wieq(a)up_fayhw, = (wlea(a)wfl)wlwa(w;luP_{a}hwa) € B(Cy, R)wiw,B(Cy, R).

This finishes the proof of the first case. Note in particular that in the first case we need
not multiply by an element of Q¢,.

In the second case, we can write w; = wjw, for lg(w;) = lp(w}) + 1 and so

(B(Cy, R)w; B(Cy, R)) - (B(Cy, R)waB(Cy, R))
= (B(Ca, R)w)) - (waB(Ca, R)) - (B(Cy, R)waB(Cs, R)).

But according to Lemma we know that up to multiplication by an element of Q¢,,

we have

(waB(Cy, R)) - (B(Ca, R)waB(Ca, R)) C B(Ca, R) U (B(Cy, R)waB(Cy, R)).
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Thus up to multiplication by an element of Q)¢,, we have

(B(Ca, R)w1B(Cy, R)) - (B(Ca, R)waB(C2, R))
C (B(Cy, R)w)) - [B(Ca, R) U (B(Cy, R)waB(Cs, R))]
= (B(Cy, R)w; B(Cy, R)) U (B(Cy, R)w| B(Cy, R)wa B(Cs, R)).

But according to the first case B(Cy, R)w| B(Cs, R)w,B(Cs, R) C B(Cy, R)wjw,B(Cs, R).
This finishes the second case and the proof of the proposition. O

6.2.2 Conjugation generated word norms on Sp,(R/2R)

To determine A, (G/N¢,), we will first prove:

Lemma 6.2.9. Let K be a field of characteristic 2. Then each subset S that normally gen-

erates Sp,(K) contains an element A € S such that A alone normally generates Sp,(K).

This implies Ay (Spy(K)) = A1(Spy(K)).

Proof. Observe that Sp,(K) = PSp,(K), because each scalar matrix in Sp,(K’) must be
I as char(K) = 2. Next, assume that K # Fy and pick a non-trivial element A in the
normal generating subset S of Sp,(K). But as K # Fy, the group Sp,(K) = PSp,(K) is
simple by [41, Chapter 4, p. 33, Theorem 5| and hence A normally generates Sp,(K).

If K = Fy, then Sp,(K) is isomorphic to the permutation group Sg according to
Proposition However Sg only has three normal subgroups, namely Sg, A¢ and the
trivial subgroup. So for a normal generating set S of Sp,(K) pick an element A € S, not
lying in Ag. Then clearly the normal subgroup generated by A must be the entire group
Se = Spy(K).

So for each normal generating set S of Sp,(K) there is an Ag € S that normally
generates Sp,(K). This implies:

Aco(Spa(K)) = A1(Spy(K)) = sup{||Spa(
> sup{||Sp4(K)||s| S normally generates Sp,(K)}
= Ao (Spy(K)).

K)||as| S normally generates Sp,(K)}

[]

However A;(G) is an invariant of a group closely related to the classical notion of

covering numbers of finite groups. The invariant
en(G) := min{n € N|V conjugacy classes C of G : C" = G}.

is the covering number of the group G. Now clearly, A;(G) < cn(G) holds. In most cases

we are interested in, one actually has equality between the two numbers.
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Proposition 6.2.10. Let K be a field of characteristic 2. Then
1. Ass(Spy(F2)) = 5,
2. Ao(Spy(Fy)) =4 and
8. A(Spy(K)) < 104 holds for |K| > 8.

Proof. As mentioned in the proof of Lemma the group Sp,(F3) is isomorphic to Se.
However for Sg the covering number can be determined to be 5 from the main result in [7].
Further, Proposition implies that the conjugation generated word metric induced
by the transposition (12) in Sg has diameter 5. Hence A (Sp,(F2)) = 5. This proves
the first claim of the proposition. The paper [23] contains a list of covering numbers
calculated using a computer algebra system and states on page 61 that cn(Sp,(F4)) = 4.
This yields Ao (Spy(Fy)) < 4. The lower bound A, (Sp,(K)) > 4 is a consequence of
Proposition This proves the second claim of the proposition. The third and last
statement is a consequence of Liebeck’s and Lawther’s |25, Theorem 1|, which implies in
our terminology for ¢ a power of 2, that A (Sp,(F,)) = A1(Sps(F,)) < 8(5%2+3) = 104.
Then Lemma [6.2.9| vields the last claim of the lemma. O]

Remark 6.2.11. To our knowledge, nobody calculated the covering numbers of Sp,(K) for
general finite fields. However, we suspect that cn(Sp, (X)) = 4 holds for all finite fields
with at least 4 elements and as mentioned, Proposition implies A (Spy(K)) > 4.

Next, we can give an explicit upper bound for A(Sp,(R)) in some cases:

Theorem 6.2.12. Let R be a ring of S-algebraic integers such that R is a principal ideal
domain and 2R-pseudo-good with R # Z[%j?’], Z. Then for all k € N one has:

1. Ap(Spy(R)) < 5+ 17644k, if (R : 2R) = 2.
2. Ap(Spy(R)) < 4+ 17644k, if (R : 2R) = 4.
3. Ap(Spy(R)) < 104 + 17644k, if (R : 2R) > 8.
4. AR(Spu(R)) < 13824k, if (R : 2R) = 1.

Proof. Using Dirichlet’s Unit Theorem [32, Corollary 11.7], one can see that every ring
of S-algebraic integers, except rings of imaginary quadratic integers and Z have infinitely
many units. Consequently, according to Proposition [6.2.3] all 2R-pseudo-good rings R as
in the theorem have infinitely many units. Thus Theorem [6.1.5] Proposition [5.1.8] and
the fact that Sp,(R) = FE(Cs, R) holds, implies that

Sp,(R) = (UT(Ca, R)U(Cy, R))*UT(Cs, R) or Spy(R) = (U (Ca, R)UT(Cy, R))*U™(Cs, R)
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Consequently, we can assume J = 5 in Proposition and so
K(Cy R) <64 8x%5 =46

holds, if R # 2R. However, if R = 2R, then clearly K(C5, R) < 36 holds. Next, we know
from Theorem that L(Cy) < 384, as R is a principal ideal domain. Furthermore,

Corollary implies
Ne¢, = ker (mag : Spy(R) — Spy(R/2R)) .

This implies that G/N¢, = Sp,(R/2R) and so Proposition implies

1. A(G/N¢,) =5, if (R:2R) = 2.

2. A(G/Ne,) = 4, if (R: 2R) = 4.

3. Au(G/Ng,) < 104, if (R : 2R) > 8.
Further A (G/N¢,) = 0, clearly holds in case of (R : 2R) = 1. Combining these facts
with the following inequality from Theorem [3.2.1}

Ar(Spy(R)) < L(Cy) K (Co, R)k + As(G/Ne,)

for k € N yields the claim of the theorem. O
We finish this subsection by giving bounds in the two omitted cases:

Proposition 6.2.13. For all k € N, one has
1. Ak(Spy(Z)) < 5+ 248064k.
2. A, (sp4(2[%—*3])> < 4+ 248064k

Proof. Both of these rings are 2R-pseudo-good. This is obvious for Z by considering the

set of representatives {0, 1} and follows for Z[%‘T’] from Proposition m Furthermore,

both Z and Z[%j?’] are principal ideal domains. Again, this is well-known for Z and
1+v/-3

can be seen for Z[~={==] by way of using the norm map

1 -3
B

Noy=3)0 : Z [

to show that Z[%ﬁ’] is an euclidean domain. Also Theorem implies for both
rings R that J in Proposition [6.2.5] can be chosen as 80. So Proposition implies
K(Cs, R) < 6+ 8% 80 = 646. Lastly, Proposition [6.2.10| implies

L A (SP4(Z)/Ney) = D (Spa(Fa)) = 5.
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2. A (SPAZIEE])/Nes ) = Ao (SD4(F1)) = 4.
This yields the proposition in the same way as in the proof of Theorem [6.2.12 O]

6.3 Explicit bounds for G,

In this section, we will explain how to give explicit values for G := G5(R) for R certain
rings of algebraic integers. The strategy is similar to the one for Sp,(R). Recall that the
positive roots ing G5 are o, B, a + 3,2a + §,3a +  and 3a + 203 for « short and simple

and [ long and simple. Further, recall:

QGQ Z:{A€¢(2Z‘)A_1|LL’ € R,¢ € G5 short, A € GQ(R)}
U{Agy(x)A7 |z € R, ¢ € Gy long, A € Go(R)}

as well as the group Ng, := (Qg,). Further let 7 : G — G/Ng, be the quotient map.
Then from Theorem for G2(R), one notes for k € N that:

Ap(G2(R)) < 6K (Ga, R)L(G2)k + Ax(G/Ng,)

where

1. the constant L(G3) is given as in Theorem and Proposition [£.5.7]

2. the constant K (R, G2) is defined to be [|[Ng,| g, -

However, in contrast to the situation for Sp,(R), the group Ng, is already the entire group
G2(R) in a lot of cases and this implies A(G/Ng,) = 0 and K(R,Gq) = [|G2(R)|lqq,

then. First, we will show the following useful lemma:

Lemma 6.3.1. Let R be a ring of S-algebraic integers with R/2R = Fy. Then there is an
epimorphism q : Go(R)/Ng, — Fa with

a+2R, if ¢ € Gy short
q(eg(a)Ne,) = ‘
0, if ¢ € Gy long
Proof. First, observe that there is an epimorphism
p/ : GQ(FQ) — ]F2

with

a, if ¢ € G5 short

P(eg(a)) = ,
0, if ¢ e G, long
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for ¢ € Gy and a € Fy. This can be seen as follows: The group Gy(F3) is generated by
the root elements ¢4(1) of order 2 for ¢ € G, and according to [4I, Chapter 6, p. 43,
Theorem 8(b)], the fact that root elements have order 2 and the following relations on

the root elements of G5(IFy) already give a finite presentation for the group Go(FFs):

(6¢<1),€¢(1)) = €¢+¢<1)€2w+¢( )83¢+¢(1)63¢+2¢(1), if ¢ + w € G2 and QZ5 10I1g and 'QD ShOl"t,
(ep(1), (1)) = p4y(1), if ¢+ tp € G2 is long
(€6(1),e4(1)) = 2049 (1)epr2y(1), if &+ ¢ € G2 and ¢ + 4, ¢, 1) short.

However, the map p’ defined as above on the root elements £,4(a) respects these relations
and so p’ extends to a group homomorphism p’ : G5(Fs) — Fy as required and this p’ is

obviously surjective. Hence, there is an epimorphism
p: GQ(R) — GQ(R/QR) = GQ(FQ) — IFQ
with

a+2R, if ¢ € Gy short
pleg(a)) = , (6.3)
0, if € G5 long

for ¢ € Gy and a € R. Thus to obtain an epimorphism
q: G3(R)/Ng, — Fy

it suffices to show that p(Ng,) = 0 and so it suffices to show p(Qg,) = 0. However, this

is obvious due to (6.3). O

Then we obtain:

Proposition 6.3.2. Let R be a 2R—pseudo-good ring and let n € N be given such that
|G2(R)||er, < n holds.

1. If |R/2R| > 4, then K(G2, R) < 9n and Ga(R) = Ng,.
2. If |R/2R| = 0, then K(Gy, R) < n and Go(R) = Ng,.
3. If R/2R =y, then K(Gq, R) < 12n + 1.

Proof. For the first claim of the lemma, it suffices to show that

e4(x) € Ng, and |le4(7)|qq, <9

for all ¢ € G, and = € R. First, observe that this is obvious for ¢ € G5 long, so we

may assume that ¢ € G5 is short. Furthermore, we can assume after conjugation by

152



appropriate Weyl-group elements that ¢ = «. Observe that K := R/2R has at least four
elements. So K contains an element ¢ such that neither £ nor ¢ — 1 are trivial, because
otherwise K would only have two elements. Then as R is 2R—pseudo-good, we can pick
a unit € R with x + 2R =t + 1 and an element y € R with y + 2R = ¢!, Further let
z € R be arbitrary. This implies

(ha(x™), ea(y2)) = ha(x Vea(y2)hs(z™) ea(—y2) = calzyz)ea(—y2) = ea((z — 1)y2).

But by definition of z and y, we obtain (z — 1)y — 1 € 2R. Hence there is a u € R such
that (hs(z™'),e0(y2)) = ca(2)ea(2u). However, observe that hg(z~!) is an element of Ng,

and

1hs(x™ N ga, = lles(z™e_p(—x)es(z™es(—1)e_ps(1)es(—1)llqe,
= llep(z™" = De_g(—)eg(z™! = De_p(1)]lqs, < 4.

Thus, we can conclude that

lea()llae, = I(hs(@™),ea(y2))eal—2u)llgq, < 2%4+1=9.

The second claim of the lemma is obvious, because if R/2R is trivial, then 2 € R is a
unit and hence not only are e4(z) for x € R and ¢ € G2 long elements of Q)¢,, but also
e4(x) = €4(2(x/2)) for x € R and ¢ short.

For the third and last claim of the lemma, we will first show that each element of
es(R) for ¢ € Gy agrees with an element of ¢,(R) after multiplication with at most 12n
elements of Q¢,. This is obvious if ¢ is long, because then c4(R) C Qg, holds. So let
¢ € G be short and @ € R be given and consider £,4(a). Assume first, that ¢ is positive
and consider the case ¢ = o+ (3. Then observe that wgeqarp(a)wy' = eo(+a). But

wg = ep(L)e—p(=1)es(1) ~ p(2)e—p(-1)

and hence |wg|lqs, < 2 and Hwﬂ’lHQG2 < 2 hold. Hence ¢,,4(a) agrees with an element
of £,(R) after multiplication with up to 4 elements of Q)g,. Second, consider the case
¢ = 2a + . Observe that

(e5(a),ea(1)) = atp(Fa)era+p(Fa)es015(Ea)E30125(£a?).

Observe that [|(gs(a),ea(1))llgs, < 2 as well as [ezats(Fa)cars(£a?)|lgq, < 2. This
implies that

res(£0) - (505 (£0)Es0425(20%) (25(a), 20(1)) ™) = carp(a)
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and so e9,45(Fa) agrees with an element of €,45(R) after multiplication of up to 4 ele-
ments of ()¢, and hence using the first case with an element of ,(R) after multiplication
with up to 8 =4 + 4 elements of Qg,.

Next, assume that ¢ is negative and short. First, assume that ¢ = —a — . Similar to
the case of ¢ = 2a + 3, we need 8 elements of (Q¢, to turn

-1

ea(ta) = wae_o(a)w,

into the element

-1
o -

€_a-p(Fa) = wae_9q—p(Fa)w

In the case of » = —a one needs another 4 elements of Q¢, to turn e_,_z(£a) into
£_o(Fa). So in total one needs 12 = 8 + 4 elements of Q¢, to turn €_,(a) into an element
of e4(R).

For ¢ = —2a — 3, one needs 4 elements of Q¢, to turn an element of €_5,_s(R) into
an element of e_,_g(R) and one needs another 8 elements of )¢, to turn an element of
€_a—p(R) into an element of ¢,(R). Hence in total, one needs 12 element of ()¢, to turn
an element of €_s,_(R) into an element of ¢,(R). To summarize, one needs at most 12

elements of Qg, to turn an element of €,(R) for ¢ € G5 into an element of £,(R).

To finish the proof of the third claim let A € Ng, be given and choose ¢y, ..., ¢, € G2
and aq,...,a, € R with

A= H €4, (a;).
i=1

This implies that up to multiplication with 12n elements of Qg,, the element A is an
element of ,(R). Hence there is a b € R with

| Aca(~b)llqq, < 12n.

However, A is an element of Ng, and so €,(b) is an element of Ng, as well. Yet, according
to Lemma this implies that b € 2R and hence £,(b) is an element of Q¢,. Thus

HA||QG2 <12n+ 1.

[]

Remark 6.3.3. Further K(R,G3) < 12n + r(R) holds, if the ideal 2R in R factorizes as
follows:

2R =P, - Pyg

with R/P; = Foforalli € {1,...,7(R)}. This can be shown by following the proof strategy
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of the last part in Proposition and finishing with the existence of an epimorphism
¢ : Go(R)/Ng, — Fy with

(a+P1,...,a+P,), if ¢ € Gy short
p(es(a)Ne,) = _ (6.4)
0, if € G5 long

Next, observe the following:
Corollary 6.3.4. Let R be a 2R-pseudo-good ring.
1. If R/2R =Ty, then Go(R)/Ng, = Fy and so A(G2(R)/Ng,) = 1.
2. If|[R/2R| > 4 or |R/2R| = 0 then G3(R)/Ng, is trivial and so Ay (G2(R)/Ng,) = 0.
We are in place now to give an explicit upper bound for Ag(G3(R)) in some cases:

Theorem 6.3.5. Let R be a ring of S-algebraic integers such that R is a principal ideal
domain and 2R-pseudo-good with R # Z[%j’], Z. Then for all k € N one has:

1. AL(Go(R)) < 41007264768k, if |R/2R| > 4.
2. Ap(G2(R)) < 4556362752k, if |R/2R| = 0.
3. Ap(Go(R)) < 54760730112k + 1, if R/2R = TFs.

Proof. Similar to the proof of Theorem [6.2.12| each element of G5(R) can be written as a
product of 54 = 9% 6 = 9 x |G5 | root elements. Thus Proposition implies

1. K(Ga, R) < 9% 54 = 486, if |R/2R| > 4.
2. K(Gs, R) < 54, if |R/2R| = 0.
3. K(Gy, R) < 12%54 + 1 = 649, if R/2R = .
Further, Corollary implies:
1. If R/2R = Fy, then A (Ga(R)/Ng,) = 1.
2. If |[R/2R| > 4 or |R/2R| =1 then A, (G2(R)/Ng,) = 0.

Together with the result
L(G5) < 14062848

from Proposition the theorem follows from the inequality
A(Ga(R)) < 6K(Go, R)L(G2)k + As(G/Ng,)
from Theorem B.2.5 O
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We finish this subsection by giving bounds in the two cases omitted above:
Proposition 6.3.6. For all k € N, one has
1. Ax(G2(Z)) < 82098906624k + 1 and

2. A(G(Z[HHE))) < 61510897152k

Proof. We already know that both of the rings are 2R-pseudo-good and principal ideal
domains. Hence Theorem implies for both rings R that each element of Gy(R) can
be written as a product of 81 root elements. So Proposition implies, as Z/27 = F,
and Z[MY=2]/27Z[MY=3) = T, hold, that

1. K(G3,Z) <12%81+1=0973 and
2. K(Ga, Z[MY=2]) < 9% 81 = 729,

Lastly, Proposition [6.2.10] implies
1. Ax(G2(Z)/Ng,) = 1.

2. Ao(Ga2(Z[*4=2]) /Ng,) = 0.

This yields the proposition together with L(G3) < 14062848 from Proposition in the
same way as in the proof of Theorem [6.3.5 O

6.4 Orders in rings of algebraic integers

In this section, we talk about orders in rings of algebraic integers and Morris’ results in [30]
and how to use them to get strong boundedness results. We do not define orders precisely,
but they are subrings of rings of algebraic integers that are also sublattices of the same
ring of algebraic integers. The classical non-trivial example is Z[2i] = {a + 2bi|a,b € Z}.
Further, define for a subset X of SL,,(R) the level ideal [(X) as the sum of all level ideals
[(A) for A € X.

First, there is the following result by Morris that is very similar to our results, however

wrong as stated.

Theorem 6.4.1. [30, Theorem 6.1(1), Remark 6.2] Let B be an order in a ring of alge-
braic integers and S a multiplicative set in B — {0}. Further assume either that n > 3
or that ST'B has infinitely many units. Also let X be a subset of G := SL,(S™'B),
that is normalized by root elements and that does not consist entirely of scalar matrices.
Then X boundedly generates a finite index subgroup N of SL,(S™'B) with a bound on
the mazimal length of a word in elements of X that depends on n, the degree [K : Q|, the
minimal numbers of generators of the level ideal [(N) and the cardinality of ST*B/I(N). If
X :={gsg~ts € S,g € SL(ST'B)} for a finile set S with at least one non-scalar element,

then the minimal number of generators of [(N) is smaller than n?|S|.
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As mentioned, this theorem is false as stated and we want to talk briefly about the

error and how to interpret this theorem in the context of boundedness-considerations:

1. A dependence that Morris does not mention is that the bounded generation of N also
depends on a first order description of the set X. The existence of this dependence
can be seen as follows: If X is a finite collection of, say k, conjugacy classes in SL,,(R)
generating SL, (R), then none of the numbers mentioned in the theorem depend on
k. Hence, SL,(R) would be uniformly bounded. However, Corollary shows
that this is not the case. But adding this dependence on a first order description of
X, Theorem is correct.

2. We do not want to explain in detail how the dependence on a first order character-
ization of X arises in Morris’ proof. Crucial to our investigation however is the fact
that X being a collection of at most & many conjugacy classes generating SL,,(R) is
a first order property. This holds because Ay, ..., A; € SL,(R) normally generating
SL,(R) is equivalent to the first-order condition II({A1, ..., Ax}) = 0 according to

Corollary [3.2.8

3. In particular, the bounded generation result for SL,(R) by k conjugacy classes
obtained from the corrected Theorem depends on k, but not on the particular
classes themselves. Phrased in this way, this establishes that SL, (S~ B) is strongly
bounded. The main difference to our result, is that Morris has no control on the
actual value of Ag(SL,(R)), whereas we can establish that the dependence is at
least linear in k. Structurally, the main reason for this difference is that Morris
applies a first order compactness result to an entire set of generators to establish
bounded generation. We, on the other hand, study the normal subgroup generated
by a particular given element A of the group G(®, R) to obtain root elements with

arguments lying in its level ideal [(A) and only later consider the full generating set.

Morris [30), Theorem 5.26] proves bounded generation by root elements for the sub-
group F(A;, R) of SLy(R) also in the case that R is only a localization of an order, if
said localization has infinitely many units. He further demonstrates that the elementary
subgroup E (A, R) of SL3(R) is boundedly generated by root elements for R a localization
of an order [30, Corollary 3.13]. Thus using Corollary and modifying the proof of
Theorem and Theorem in the same manner as we did to prove Theorem [5.2.9]

one shows:

Proposition 6.4.2. Let R be a localization of an order in a ring of algebraic integers
and ® an irreducible root system of rank at least 2. Assume further that R has infinitely

many units in case ® is not simply-laced. There is a constant C(®, R) such that
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holds for all k € N.

6.5 Boundedness of SLy(R) for rings with infinitely many

units

We will be talking shortly about SLy(R) in this section. Reading Morris’ paper, especially
the aforementioned Theorem [6.4.T seems to imply that the boundedness properties for
SLy(R) for R a localization of an order with infinitely many units might be the same as
for SL,,(R) for n > 3. So one could believe that Morris proved:

Conjecture 6.5.1. Let R be a ring of S-algebraic integers with infinitely many units.
Then SLo(R) is strongly bounded.

We believe this to be true, but Morris did not prove it. The problem is the requirement
mentioned in Section to give a first-order description of the property of a collection
of k conjugacy classes to normally generate SLy(R). In contrast to the case n > 3, no
such characterization is known to us. For example II(S) = () does not suffice to prove
that S C SLy(R) normally generates SLo(R): The ring R = Z[%ﬁ] is a counter-
example. It has infinitely many units according to |32, Corollary 11.7] and the element
A = I, + e;p € SLy(R) satisfies II({A}) = (. However,the ideal 2R factors in R as

2R =P, - P, for
v -1
P, = (%7) and P, = <3T7>

with Py # Py and R/P; = R/Py = Fy, which implies that there is an epimorphism
SLQ(R) — SLQ(R/P1> X SLQ(R/PQ) = SL2<F2)2.

But the group SLy(F9) is isomorphic to the permutation group Ss, which can be seen from
the fact that SLy(FFy) operates on the three non-zero vectors of F3. But then composing
with the sign epimorphism S3 — F5 yields an epimorphism ¢ : SLy(R) — F3 and as F3 is
abelian, the element A could only normally generate SLy(R), if ¢(A) would generate F3,
which is obviously impossible.

However, a finite collection of conjugacy classes X generating SLy(R) cannot be en-
tirely scalar and this is a first order property. Further, G(A;, R) = E(A;, R) holds
according to Theorem So a suitably adjusted version of Theorem yields that
X boundedly generates SLy(R) with the bound depending on X. Hence one obtains:

Proposition 6.5.2. Let R be a ring of S-algebraic integers with infinitely many units.
Then SLy(R) is bounded.
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Chapter 7

Finite normal generating sets in

Chevalley groups

In the previous chapters and theorems, we proved upper bounds on the diameter of
conjugation generated word norms on split Chevalley groups G(®, R) for R a ring of S-
algebraic integers. Also these bounds are linear in the number of conjugacy classes in the
corresponding generating set. In this chapter, we show that this linearity is sharp in the

sense, that for almost all £ € N, there are finite normal generating sets Sy with
|G(®, R)l[s,, = 2k

and |Sk| = k. So in general, linear bounds in the cardinality of the normal generating
sets are the best possible. The dichotomy between G5, C5 and the other ® persists here.
Namely, for ® = C5 or GG, such lower bounds depend strongly on the ring R.

In the first section, we speak about root systems ® of high rank and demonstrate the
existence of normal generating sets with better lower bounds in some cases. In the second
section, we speak about finite normal generating sets of Sp,(R) and Go(R) for R rings of
algebraic integers. It will turn out that the existence of these sets is restricted by number

theoretic properties of R.

7.1 Conjugacy classes in finite groups of Lie type and

lower bounds in the higher rank cases

In this section, we give lower bounds on Ag(G(®, R)) for ® an irreducible root system of
rank at least 2 not equal to Cs or G. In order to do this, we will first give lower bounds
on conjugation-generated norms on words norms defined over fields and then apply those
lower bounds to obtain lower bounds for G(®, R).

First, we need the following statement:
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Lemma 7.1.1. Let K be a field, ® an irreducible root system of rank at least 2, ¢ a root
in ® andt € K not-zero. If & = G, then assume further that ¢ is short. Then E = c,4(t)
normally generates G(®, K) and |G(®, K)||g > 2 holds.

Proof. We will show first that E normally generates G(®, R). Every field is semi-local
and hence according to Proposition m the group G(®, K) is boundedly generated by
root elements. Hence it suffices to show the conditions of Corollary for {E} to
prove that E normally generates G(®, K). If ® # Cy or (o, then, we are reduced to
satisfying the condition II({E}) = () and this condition is satisfied, because ¢t # 0. Hence
the only remaining case is ® = Cy or Go. Regarding Sp,(K) : If ¢ is long, then using
Lemma m@), one obtains that the normal subgroup N generated by F, also contains
£o(t) for a the simple, positive, short root in Cy. So we may assume ¢ = «. Then the

normal subgroup N generated by E = £,(t) also contains
Ea(s) = ea(st™t) = hg(s " t)ealt)ha(s™'t) ™

for all s € K — {0}. Hence N contains all root elements for ¢, (x) for ¢» € Cy short and
x € K. Thus according to Lemma [3.4.2)(3), the normal subgroup N also contains all root
elements ¢, (x) for ¢ € C5 long and x € K. Hence N contains all root elements of Sp,(K)
and hence N = Sp,(K) holds according to Proposition [p.2.2 Similarly, for G5(K), one
can show that the normal subgroup generated by E contains all root elements g, (x) for
¥ € G5 short and = € K. Then Lemma [3.5.4(2) implies that N contains all root elements
ey(x) for ¢ € Gy long and « € K. Thus N contains all root elements of G5(K) and hence
N = G9(K) holds according to Proposition Thus E generates G(®, R) in all cases.

To finish the proof, it suffices to show that [|G(®, K)l.,) < 1 is not true. If it were,
then each element in G(®, K) would be conjugate to either e4(t) or e4(—t). But if K
is the algebraic closure of K, then this would imply that each element of the subgroup
G(®, K) of G(®, K) would be unipotent in the linear algebraic group G(®, K'). However,
if K is not the field Fy, then for some simple root ¢ € ® and s # 0, 1, the element hy(s)
is not unipotent. This resolves the case K # F,.

If K =IF, holds and if each element in G(®, K) is conjugate to e4(1) = £4(t) = c4(—1),
then each element in G(®, K') would have the same order as £4(1), that is char(K) = 2.
However, as Fo = K holds, the Weyl group W (®) is actually a subgroup of G(®, R)
according to [41, Chapter 3, p.24, Lemma 22|. But each Weyl group W (®) has one of the

following groups as subgroups:
W(Ag) = Sg, W(CQ) = D4 or W(Gg) = DG.

But clearly all three groups S3, D4 and Dg contain elements of orders different than 2 and
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this contradiction finishes the proof. O

Remark 7.1.2. The condition that ¢ is short is necessary in the case of ® = G5, because
for ¢ a long root in G the element £4(1) € G5(FF2) is contained in the kernel of the
epimorphism ¢ : Go(Fy) — Fy from Lemma and hence cannot possibly normally

generate a larger group than this kernel.

Second, we need the following:
Proposition 7.1.3. Let K be a field, t € K — {0}.

1. Forn > 2 and ¢ € A,, the element E = c4(t) normally generates G(A,, K) and
|G(A,, K)||g > n+ 1.

2. Forn > 3 and ¢ € B, the element E = c4(t) normally generates G(B,, K) and
|G(By, K)||g > n+ 1.

3. Forn > 2 and ¢ € C,, long, the element E := 4(t) normally generates G(C,,, K)
and ||G(Cy, K)||g > 2n.

4. Forn >4 and ¢ € D,, the element E = c,(t) normally generates G(D,,, K) and
|G (D, K[z > .

Proof. That E normally generates G(®, K) is clear in all cases from Lemma We
only do the rest of the proof for G(C,,, K') = Sp,, (K), because the proofs are very similar
in all cases. Note that using the conventions from Section , we can (possibly after

conjugation with Weyl group elements) assume E = Iy, +tey 1. We define the subspace
I(l) := {v e K*"|l(v) = v}.
for a linear map [ : K?" — K?". We prove next that for [;,l, : K** — K?", one has
dimy (1 (l4l3)) > dimg(1(l1)) + dimg(1(l2)) — 2n. (7.1)
To see this, observe first that I(l;) N I(ly) C I(l1l3) and hence

dimg (I(Lly)) > dimg(I(l) N I(I2)) = dimg (I(1)) + dim (I(ls)) — dimg((I(1,), I(I2)))

Observe that the linear map E : K?" — K?" induced by E has

[(Eil) :[(E) =Ke @ - b Ke,DKeod---D Keogp.
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Hence dimgI(FE) = 2n — 1 = dimgI(E~!) holds. Note further for X € K> A e
GLy,(K) and v € K?", that the following holds:

v € I(X) precisely if Av € [(AXA™).

Hence I(AXA™') = AI(X) holds and thus dimgI(X) = dimgI(AX A™1). Hence for each
conjugate X of F or E~! in Sp,, (K), one has dimg (/(X)) = 2n— 1. Next, let X,..., X}
be either conjugates of E or E~! in Sp,, (K) or Iy,. Then one can show by induction on
k € N that dimg ([(X;--- Xi)) > 2n — k.

First, this claim is clear for k¥ = 1. For the induction step, observe for k > 1 that
applying implies:

=dimg([( X1 Xp1))—1>2n—(k—1)—1=2n—k.

This implies in particular that for each A € Bg(2n—1) there is a non-trivial vector v(A) €
K?" fixed by A. Hence each element of Bg(2n — 1) has eigenvalue 1. So if ||Sp,,,(K)||z <
2n—1 or equivalently Bg(2n—1) = Sp,, (K) were to hold, then each element A € Sp,,,(K)
would have eigenvalue 1. Thus it suffices to give an element A € Sp,,(K) without the
eigenvalue 1 to finish the proof. To this end, observe that for B € SL,,(K), the matrix

B| o,
A= | ————
0, | BT

is an element of Sp,,(R) with characteristic polynomial
xa(@) = xs(@)xp-r(x) = xp(@)xp-1(2).

But this implies that A has eigenvalue 1 precisely if either B or B~! has eigenvalue 1.
Yet B~! has eigenvalue 1 precisely if B does. Thus it suffices to provide an element
B € SL,(K) without eigenvalue 1 to finish the proof. If n = 2m is even for m > 1, then

consider for B a block-diagonal matrix of the form
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with the block C' equal to the 2 x 2-matrix

o= ()

Observe that this implies for the characteristic polynomial

x5(7) = xc(@)" =[(1 —2)(-2) +1]" = [o" -z +1]™.

Obviously 1 is not a root of this polynomial, so 1 is not an eigenvalue of B. This finishes

the case n even. If n = 3 + 2m is odd for m > 0, consider the block-diagonal matrix

D
C
B = C
C
for D the 3 x 3-matrix

01 1

D=10 0 1
1 00

. Observe that this implies for the characteristic polynomial

x5(2) = xp(@)xc ()™ = [~2* + 2+ 1] - [2* — 2+ 1™

Obviously 1 is not a root of this polynomial either, so 1 is not an eigenvalue of this B.

This finishes the case n odd and the proof.

Remark 7.1.4.

1. In the case of B, or D,, the linear action used is the one induced by the map
G(Bn, K) = Spin2n+1 (K) — SOgn_H (K) C GL2n+1(K)

and

respectively and note that the covering map Spin,;(K) — SO;(K) is always surjec-

tive.

2. This ‘dimension counting’-strategy is quite well-known and was mentioned to me

by B. Karlhofer in a different context, but it is also alluded to in Lawther’s and

Liebecks paper [25], p. 120].
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3. There are a couple of other ways one could show that |G(®, K)||g has a lower bound

linear in the rank of ®. For example, one could also compare the dimension of the
centralizer of £ in G(®, K') with the dimension of G(®, K).

The main theorem in this sections is a generalization of |24, Theorem 6.1] with better

lower bounds:

Theorem 7.1.5. Let R a Dedekind domain with finite class number and at least k distinct

mazimal ideals. Further let ® be one of the following root systems:
1. A, forn > 2,
2. B, forn >3,
3. C, forn >3,
4. D, forn >4,
5. Eg, Er, Eg or Fy
such that G(®, R) is boundedly generated by root elements. Then the following hold
1. Ap(G(An, R)) > k(n+1) forn > 2,
2. Ap(G(By, R)) > k(n+1) forn > 3,
3. Ap(G(C, R)) > 2nk forn > 3,
4. Ap(G(Dy, R)) = kn for n > 4,

d. Ak(G(CI),R)) Z 2k fO’I’ ¢ = E67E7, Eg, F4.

Proof. Let k distinct maximal ideals Py, ..., P be given and let ¢ be the class number
of R. All the ideals P{ are principal for i = 1,...,k so choose {1, ...,t; as generators of
Py, ..., Pg respectively and set
T = H t;
1<j#i<k
forall e =1,...,k. Fix a long root ¢ € ® next and consider for : = 1,..., k the elements

A :=¢ey(r;) and theset S := {A;,..., Ax}. Then II(A;) = U, {F;} holds fori =1,... .k
and thus T1(S) = 0 follows. Hence Corollary implies that S is a normally generating
set of G(®, R). Next, set K; := R/P; for i = 1,...,k and consider the map

7:G(® R) = [[G(@,Ki), A (np,(A),...,7p,(A)).

=1

Further observe that r; is an element of P; for all 1 <14 # j <k and r; is not an element

of P;. Thus the only non-trivial component of 7(A,) is the G(®, K;)-component equal to
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e4(r;+P;) and G(®, K;) is normally generated by €,(r; +P;) according to Lemma |[7.1.1]
Also this implies that the only non-trivial component of any conjugate of w(A;) is the
G(®, K;)-component. Together this implies that 7(S) normally generates [[f_, G(®, K;)

and

IG(®, R)[s = HHG (@, Ki)ll(s) = Z 1G(®, Kz i)

First, observe that [|G(®, K;)|lc,(r+2) > 2 holds according to Lemma [7.1.1] for all @
and all i =1, ..., k. This implies
k
IG(®, R)lls = Y IIG(®, Ki) ey risp) = 2K

=1

This finishes the proof in the cases ® = Fg, 7, Es and F}.
For the other cases of ® it suffices to apply Proposition to obtain

LIG(An, Ki)lleyriapy =0+ 1,
2. [|G(Bn, Ki)lleyripy = 1+ 1,
3. [|G(Chy Ki)l|ey(ri+p) > 21 and
4N G(Dn, Ki)lleyrispy = 10

forall i =1,..., k. Hence we obtain
k(n+1), if d=A, forn>2

k .
k(n+1), if ® = B, forn >3
IG(®, R)ls > > 1G(®, Ki)|eyrivpyy > ,
i—1 2nk, it ® =C, forn > 2

\kn, if®=D,forn>4

This finishes the proof. 0

We want to point out that for 7' € {A, B,C, D} and n, k € N this theorem provides a

lower bound linear in n and k. Namely, the equation

Aw(G(To, R))

o > CT

holds for some constant C7 > 0. Yet it is not possible to find lower bounds of Ap(G(A,, R))
for example with a better asymptotic behaviour in n using arguments as in the proof of
Theorem This is the case, because the covering numbers of finite groups of Lie type
are known to be linear in the rank of the corresponding root system, due to Liebeck’s and

Lawther’s paper [25]. However, Theorem gives bounds for semi-local rings, which
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are also principal ideal domains that have the ‘correct’ asymptotic in the rank of ® and

the number of maximal ideals:

Corollary 7.1.6. Let R be a principal ideal domain with precisely q distinct mazimal

ideals. Further let n >> 0 be a natural number. Then
1. q(n+1) < Ax(SLn(R)) < 12(n — 1)q and
2. 2nq < Aso(Spy,(R)) < 768(3n — 2)q

hold.

Proof. The upper bounds are consequences of Corollary and the lower bounds con-
sequences of Theorem [7.1.5] O

For rings of S-algebraic integers the situation is less well understood. There is a

discrepancy between the asymptotic of the upper and lower bounds:

Corollary 7.1.7. Let R be a ring of S-algebraic integers with class number 1 and infinitely

many units. Further let n be a natural number. Then
1. k(n+1) < Ap(SL,(R)) < (4n+ 1)(4n + 4)k and
2. 2nk < Ag(Spy,(R)) < 192(1 4+ 5n)(12n + 12)k
hold for all k € N.

Proof. The lower bounds follow from Theorem again and the upper bounds are a
consequence of Corollary and Corollary respectively. m

Remark 7.1.8. There are similar statements for rings of algebraic integers with only finitely
many units.
7.2 Finite normal generating sets of Sp, and G,

Next, we are going to describe lower bounds on A (Sp,(R)) and Ag(G2(R)) in the case of
S-algebraic integers. It turns out that in this case the (existence of) lower bounds depends

on the way 2 splits into primes in the ring R.

Theorem 7.2.1. Let ® be Cy or Gy and let R be a ring of S-algebraic integers in a
number field. Further let

r:=r(R):= |{P| P divides 2R, is a prime ideal and R/P = Fy}|

Then
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1. the inequalities A(G(Co, R)) > 4k + r(R) and Ar(Go(R)) > 2k hold for all k € N
with k > r(R) and

2. the equality Ap(G(®, R)) = —oo holds for k < r(R).

We show both parts of the theorem separately. For the first part, the main difficulty,
compared to Theorem comes, from the more complex conditions a set S has to fulfill
to be a normal generating set. To address this, we first describe the way certain quotients

of rings of S-algebraic integers are generated by their units:

Lemma 7.2.2. Let R be a ring of S-algebraic integers, Py, ..., Ps distinct non-zero, prime
ideals in R and Iy, ..., l, natural numbers and set R := R/(Pl ... Pk).

1. If [R/P;| > 3 holds for all i = 1,...,s, then each element in R is the sum of two

UNIts.

2. If at most one of the P; has the property |R/P;| = 2, then each element in R is the

sum of at most three units.

Proof. We will show the first claim by induction on s. Let s = 1 and x € R be given.
Then assume for all @ € R that either a € P; or x — a € P; holds. Thus a(x —a) € Py
would hold for all @ € R. Thus each element in the integral domain R/P; is either z + P;
or trivial and hence |R/P;| = 2. This contradiction yields the existence of an a € R with
neither a nor = — a elements of ;. But then both a + P! and  — a + Pi' are units in
R/P!'. This solves the case s = 1.

For the induction step let prime ideals Py, ..., Ps11 be given and assume by induction
that every element g, € R/(P!'---Pl) := Ry is the sum of two units u,uy € Ry. Also
by the beginning of the induction, each element vy, € R/Plf;“f := Ry is the sum of two

s

units ug, uy € Ry. This implies that
(y1,92) = (u1 + g, us + ug) = (uy,u3) + (uz,us) € Ry X Ry = R/(P{--- Pltt) = R

is also the sum of two units. This proves the first claim of the lemma.

For the second claim of the lemma, assume wlog that |R/P;| = 2 and let y, € R/Ph =:
Ri,y2 € R/(P-..Pk) = R, be given. Then by the first claim of the lemma, there are
units uy, ug € Ry with yo = uy+us. We distinguish two cases: First, assume y; is not a unit
in R;. But then both 14y, and —1 are units in R;. Hence (y1,vy2) = (1+y1,u1)+(—1, uz)
is a sum of two units in R. On the other hand, assume y; is a unit in R;. By the first
claim of the lemma, the element uy € Ry can be written as the sum w3 + uy for two units

us, uy in Ry. This implies that
(y1,92) = (Y1, u1) + (0,u2) = (y1,u1) + (L, ug) + (=1, uq)
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is the sum of three units. O
This implies the following technical proposition:

Proposition 7.2.3. Let R be a ring of S-algebraic integers such that the ideal 2R factor-

1zes in prime ideals as follows

(1) (1)

with [R/P; : Fo] =1 for 1 < i <r and [R/Q; : Fs] > 1 for 1 < j < s. Further, let
ri,...,7 € R be given such that for each i = 1,...,r the element r; is contained in
each P} for k # i and maps to a unit in R; := R/(P} - <H;:1 ij)) Also let o be the
simple, positive, short root in Cy or Go. Then for ® = Cy or Gy, any normal subgroup N

containing

{es2x)|x € R,p € D} U{en(ri)i=1,...,1}
agrees with Sp,(R) or Ga(R) respectively.

Proof. According to Theorem the groups Sp,(R) and Go(R) are generated by root
elements. Thus it suffices to show that N contains all root elements. Hence according to
Lemma[3.4.23) and Lemmal[3.5.4|(2) it suffices to show that N contains the set {,(z)|z €
R}.

Let R := R/2R and define Ry := {a+ 2R|3b € a + 2R : ,(b) € N}. So to prove
the proposition, it suffices to show that Ry = R. We prove Ry = R in three steps. First,
we show that R, is closed under addition. Second, we show that R, is closed under
multiplication with units of R. Then, we deduce that these two steps imply Ry = R. For
simplicity, we will restrict ourselves to the case of Sp,(R) to show the three steps.

The first step is clear, because N is a subgroup of Sp,(R). For the second step, let
£4(b) be an element of N and let u € R be given such that v + 2R is a unit in R. Then
we can pick a v € R such that v 4+ 2R is the inverse of u 4+ 2R. Then observe that the

following is an element of the normal subgroup N :

s(u)es(—v)
s(=v)

ep(v)e—s(—u)ws(1) " ea(b)ws(l
= ep(v)e—p(—u)earp(£b)e—s(u
= £5(v)€atp(Eb)ea(Ebu)erars(Eb u)es(—v)

= oy p(Eb)ea(FbU)eny s(FbvU)e90 1 5(Eb*u £ bPvU?)

= o (Ebu)eqg(Fbvu £ b)eog5(Eb%u £ b2vu® £ 2b%u).

Je-
)e

Hence to finish the second step it suffices to show that +bvu b and £b%u £ b*vu? £ 2b%u
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are elements of 2R. To this end, observe first that
[tbvu £ b +2R=[b-(vu—1)]+2R=[b- (1 —1)]+2R=0+2R
and hence +bvu + b is an element of 2R. Second, note

[+b%u + b*ou® £ 20%u] + 2R = [b*u — b*vu®] + 2R = [b*u - (1 — vu)] + 2R
=[b*u-(1-1)]+2R=0+2R

and hence +b%u £ b*vu? £ 2b%u is an element of 2R as well. This finishes the second step.

To show Ry = R and thus to finish the proof, observe first that by assumption on 7,

r4+2R=(0+P20+PsE ..., 0+Pr r+Pr.QM...0%)ec {0} x R,
C (R/[P?---P"]) x Ry = R/2R

holds under the Chinese Remainder Theorem. Further r; maps to a unit 7] in the ring
R; by assumption. But by definition of N and Ry, the element r; + 2R is an element of
Ry. Next, let «/ be a unit in R; and choose a v € R such that

u+2R=(1+PR1+Pk ... 1+Pr ()" e (R/[P2---Pr]) x Ry = R/2R.

holds under the Chinese Remainder Theorem. Obviously u+ 2R is a unit in R and hence

according to the second step
ru+2R = (0+ PP (r) ) = (0+ PP i) € (R/[PE - P1]) x R,

is an element of Ry. But as «/ € R; is an arbitrary unit, this implies according to the first
step, that R, contains the subgroup of R; generated by the units of R;. Yet Lemma
implies that this subgroup is already the entire subgroup R;. So R, contains the entire
subgroup R; = {0} x Ry of R/2R. Similarly, Ry contains all the subgroups Rs,..., R,
and hence the entire ring R/2R. O

We can show the first part of Theorem now.

Proof. First, assume that 2 is a unit in R. In this case, the necessary condition in Corol-
lary [3.2.8]on a set S to normally generate Spy(R) or G2(R) reduces to II(S) = (). But this
implies that the lower bounds on Ag(Sp,(R)) and Ag(G2(R)) can be shown in the same
manner as in Theorem in this case. So we may assume that 2 in R is not a unit.
Then let the ideal 2R in R split into distinct prime ideals as follows for r := r(R):

o i) i)
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with [R/P; : Fo] = 1for 1 <i <rand [R/Q; :Fy] > 1for 1 < j <s. Next, let ¢ be a
multiple of the class number of R greater than all [4,...,[.. Pick elements z{,..., 2, € R
such that Pf = (x;) for all 4. Also choose r + 1 distinct primes V,.41, ...,V in R which do
not agree with any of the Py,..., P, Qy,..., Q. Passing to the powers V< ,..., Vi we
can find elements v, 1y, ..., v, € R with V%, = (v,41),..., V)¢ = (vg). Further, define the

following elements for 1 <u <r

T’ui_< H xi)'errl"'vk.
1<i#u<r

ru::xl---xT-( H vq).
r+1<u#q<k

We consider the set S := {ez(r1),...,e5(rk)} in Spy(R) or S := {ea(r1),...,a(r%)}

in Go(K). Both cases are quite similar, so we will only write down the case of Sp,(R).

For k>u>r+1 set

Claim 7.2.3.1. S is a normal generating set of Sp,(R).

Let N be the normal subgroup generated by S. First, note that

~

{’Pl,...,Pu,...,’PT,V;_;_l,...,Vk} ,1f1§u§7“
M(es(ra)) = i ,
(P, .. PoViets o Vo Vi} Lifr+1<u <k,

where the hat denotes the omission of the corresponding prime. This implies TI(.S) = 0.
But then Proposition [3.2.6]implies that {e4(2z)|x € R, ¢ € C5} is contained in N. Further,
Lemma [3.4.22) implies that N also contains the elements ,(r1),...,eq(r). Next, note
that by definition of the rq,...,r,, each r; is contained in each 77;7 for j # ¢ and maps to
a unit in R; := R/(P} - (H;Zl ij)) Thus N and the rq,...,r, satisfy the assumptions
of Proposition Hence Proposition implies that N = Sp,(R). This proves the

claim.

Claim 7.2.3.2. The diameter of || - ||s is at least 4k + r(R). As |S| = k this proves the
first part of the theorem for Sp,(R).

This follows as in the proof of Theorem [7.1.5] Namely, one obtains again that for

7 Spy(R) — (ﬁ Sp4(R/7)z‘)> X ( H Sp4(R/Vj)>

J=r+1

the image 7(95) is a normal generating set such that the only non-trivial component of
m(eg(ry)) is the Sp,(R/P,)-component if v < r and the Sp,(R/V,)-component if u > r+1.
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As in the proof of Theorem this implies

1Sp4(R) s > | (H Sp4<R/Pi>> X ( 11 Sp4<R/V;>) [

Jj=r+1

= (Z ||Sp4(R/Pi)”€5(m+Pi)> + ( > IISP4(R/‘G)IIEB(Tj+vj>) :

i=1 j=r+1

But Proposition [7.1.3(3) implies for j = +1,..., k that ||Spy(R/V})|lcsr,+v;) > 4 holds.
Further R/P; is isomorphic to Fy for all @ = 1,... 7 and so Proposition implies
1SP4(R/Pi)lles(ri+py = ISP4(F2)||e5y = 5 for all 4 = 1,..., 7. Hence we obtain

ISp4(R)||s > (Z 1SP4(R/P) e o, p> + < > |!Sp4<R/vj>Heﬁ<rj+vj>>

i=1 j=rt1
>br+4(k—r)=4k+r

and so the the first part of Theorem follows. O
For the second part of Theorem [7.2.1] note the following:

Lemma 7.2.4. There is an epimorphism Sp,(Fy) — Fy with €4(a) — a for all a € Ty
and ¢ € Cy. Similarly there is an epimorphism Gy(Fs) — Fo with

a, if ¢ € Gy short
0, if o€ Gy long

Proof. The epimorphism G3(Fs) — Fo with the required properties is constructed in
the proof of Lemma An epimorphism Sp,(F;) — Fy as required is obtained from
Proposition [B.0.1} The isomorphism 6 : Sp,(Fs) — Sg maps all root elements in Sp,(Fy)
to an odd number of transpositions in Ss. Hence composing with the sign homomorphism

Sg — Fa, we find an epimorphism Sp,(Fy) — Fy with the required properties. H

Remark 7.2.5. The group G(IFy) has a simple subgroup U with [Go(F2) : U] = 2. The
subgroup U is isomorphic to the twisted finite group of Lie type 2As(FFy).

Using this lemma, the second part of Theorem follows:
Proof. We restrict ourselves to the case Sp,(R) again. Let 2R = ([T, P )([T;_, Q?j)
be given as in the proof of the first part of Theorem Using the Chinese Remainder

Theorem, we know that the map

Sp4(R) — Sp,(R/2R) = HSp4 R/(P) ><H Spa(R/(Q7)) — [ [ Spa(R/P;) = Spy(Fa)’

=1
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is an epimorphism. So composing with the epimorphism Sp,(Fy) — Fy, we obtain an
epimorphism ¢ : Sp,(R) — F5. This suffices to prove the second part of the theorem,
because a given normal generating set S of Sp,(R) with |S| < r — 1 would map to a
generating set of the abelian group F} with less than r elements. The group [}, cannot be

generated by less than r elements however. O]

Remark 7.2.6. If R is a ring of S-algebraic integers with r(R) = 0, then the boundedness
properties of Sp,(R) and Gy(R) are the same as for other G(®, R). For example, Theo-
rem is in fact also valid for ® = C5 and (b, if the ring R in question does not admit
Fy as a quotient ring, which for rings of S-algebraic integers R can be easily seen to be
equivalent to r(R) = 0. Consequently, it might seem possible to apply Theorem [3.3.1]
instead of Theorem directly in the proof of Theorem for such rings R.
However, the condition on a ring R to not admit an ideal of index 2 is hard to formulate
in first-order terms and we believe it is not a first-order property at all. However, for each
ring R with an ideal I with (R : I) = 2, the ideal 2R must be contained in /. Hence, one
could instead add additional properties that make it impossible for R/2R to have the field
F, = R/I as a quotient. For example, if R/2R is finite, then one can describe the ring
structure of R/2R explicitly as a given direct product of finite, local non-reduced rings

with residue fields bigger than Fy. This is a first-order property.
This finishes the proof of Theorem We note the following corollary:

Corollary 7.2.7. Let R be a ring of S-algebraic integers and r = r(R) defined as in
Theorem[7.2.1 Then both Sp,(R) and G5(R) have abelianization FY.

Proof. We only do the case Sp,(R). Note that ((c4(2z)|z € R, ¢ € C3)) C (Sps(R),Sp4(R))
by Lemma [3.4.2(4) and (2) and further that Sp,(R) is boundedly generated by root ele-
ments by Theorem [6.1.2] Thus the abelianization A(R) of Sp,(R) is a finitely generated,
2-torsion group. Let 1’ := dimp,(A(R)). The proof of Theorem implies that A(R)
has the quotient F} and hence " > r. Now on the other hand 7’ > r is impossible, because
it would imply as in the proof of the second part of Theorem that there are no
normal generating sets of Sp,(R) with precisely r elements, which we have seen to not be
the case when proving the first part of Theorem [7.2.1] O

We call the minimal number of conjugacy classes of a group G, that can generate said
group its weight w(G). Then obviously w(G/[G, G]) < w(G) holds for all groups G that
can be generated by finitely many conjugacy classes.

One notes that for r(R) > 1, according to Corollary the minimal number of
group elements needed to generate the abelianization of Sp,(R) or G3(R) is r(R) and
according to Theorem the minimal number of conjugacy classes that can generate
Sp4(R) or Ga(R) is r(R) as well. We note the following problem:

172



Conjecture 7.2.8. Let G be a non-perfect group such that it can be generated by a finite
set of conjugacy classes. Then w(G) = w(G/|G, G]) holds.

This conjecture is related to an old problem posed by Wiegold, we were told about by
Alexander Lubotzky, asking whether there are perfect groups which cannot be generated
by a single conjugacy class. Relatively little seems to be known about this problem and
Conjecture in general. Chiodo [12] gives a rather complete account of the groups G
for which Conjecture is known to hold, most prominently solvable and finite groups.
In light of Corollary and Theorem [7.2.T we propose the more specialized conjecture
that Conjecture also holds for general non-perfect arithmetic lattices.

For rings of quadratic integers it is known how 2 splits into primes and hence we can

give the following complete description of r(R):

Corollary 7.2.9. Let D be a square-free integer and R the ring of algebraic integers in

Q[v/D)]. Then

1. r(R) = 1 holds precisely if D = 2,3,5,6,7 mod 8, so A1(Spy(R)),A1(G2(R)) #

—0Q.

2. r(R) = 2 holds precisely if D =1 mod 8, so A1(Spy(R)) = A1(G2(R)) = —oc0 and
A2(Spy(R)) = Az(G2(R)) > —oo.

Proof. We obtain from |28, Theorem 25| that the ideal 2R splits and ramifies in R as

follows:
1. 2R is inert precisely if D =5 mod 8.
2. 2R ramifies precisely if D = 2,3,6,7 mod 8.
3. 2R splits precisely if D =1 mod 8.

In the first two cases, this implies r(R) = 1 and in the third case r(R) = 2. O
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Chapter 8

Straightforward generalizations, open

questions and closing remarks

In this chapter, we talk about possible generalizations of our results in the first section

and talk a little more about improving and generalizing our results in the second section.

8.1 A straightforward generalization of Theorem [3.1.2]

In this section, we show the following:

Theorem 8.1.1. Let R be a ring of S-algebraic integers and let H be a subgroup of finite
indez in SL,(R) for n > 3. Then there is a constant C(H) € N such that Ay (H) < C(H)k
holds for all k € N.

The strategy is quite similar to the strategy to prove strong boundedness for Sp,(R).
First, one shows that a certain fixed subgroup of finite index in H is bounded and then
one shows how to get from this group to the entire group H. First, we need the following

definition:

Definition 8.1.2. Let R be a commutative ring with 1, [ an ideal in R, n > 2. Then
define the following subgroups of GL,(R) :

1. E(n,R,I):=(A(I, +te; j)) A |1 <i#j<n,AeGL,(R),t €I) and
2. C(n,R,I):= (A € GL,(R)| 7;(A) = I,).

Further for A € SL,(R) define the word norm || - ||4; : SL,(R) — Ny U {+o0} by
||l 4. :== 0 and

| X4, == min{m € NoU {+o0}| 3Y3,...,Y,, € E(n,R,I),e1,...,e, € {1,—1}:

X = ﬁYiAeinl}.
=1
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for X € SL,(R) — {I,.}.
Then the following holds:

Theorem 8.1.3. [{4, Theorem 2] Let R be a commutative ring with 1, I an ideal in R,
n >3 and H a subgroup of GL,,(R) normalized by the subgroup E(n, R, I). Then there is
an ideal J in R such that

E(n,R,I°J)Cc HC C(n,R,J).

Using this, one can prove the following preliminary proposition:

Proposition 8.1.4. Let R be a commutative ring with 1, I a finitely generated ideal in
R and n > 3. Then there is a constant C such that for all A € SL,(R), one has

| Lon, + zern|lar < Cu(1)

for all x € IPI(A) with C,(I) depending on the number of generators of I and n.

Proof. This will be proven by a compactness argument similar to the ones in Chapter
but employing Theorem [8.1.3] First, let 1 < u # v < n be given and let a language £

with the relation symbols, constants and function symbols

(R,0,1,+, X, (@i j)1<ij<ns Cs S1s - - - s Sty (b)) (M1, k} and |M]=5}s )

be given, where A := (a;;)1<ij<n IS an n X n-matrix of constant symbols, sq, ..., sx, c and

1111

Further -—! : R™" — R™ " is another function symbol and we will often write X! for

~1(X). Next, we describe a first-order theory 7, which contains the following sentences:

1. Sentences forcing the universe R := R of each model M of T, to be a commutative
ring with respect to the functions +™, x™ and with 0™, 1™ being 0 and 1.

2. The sentence VX € R™" : (det(X) = 1) — (XX ! = I,), where I,, denotes the

unit matrix in R"*" with entries the constant symbols 0,1 as appropriate.

3. det(A) = 1.

-----

5. A family of sentences (6, ),cn as follows:

0, ¥vXi,..., X, Vo o e e e b ey, e, € {0,1, -1} :
(det(X;) = - = det(X,) = 1) —

1

(I, + cerp) # (Ael>X1 (In‘"el,n Sk bé“Sp)Xfl o (AeT)XT (In+617n D b§j">sp)X;
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Here A' i = A, A1 := A and A .= I,.

Next, let us show that the theory 7, is inconsistent. If M were a model of 7,, and
R := (R)™ would be its universe, than R is a commutative ring with 1 according to the
sentences in (1) and (a;}') is an element of SL,(R) according to the sentence in (2). We
will abuse notation and denote (a;}') = AM by A.

Next, setting I as the ideal in R generated by the elements s, ... s, we know
according to Theorem [8.1.3] that for the subgroup H generated by the set

{XAX_1] X € E(n,R, 1)},
there is an ideal J such that
E(n,R,I°J)C HC C(n,R,J).

However A is an element of H and thus J must contain [(A) and hence E(n, R, I°I(A)) C
H holds. But ¢™ is an element of I°[(A) according to (4). This implies that I,, + cMey,
is an element of H. But this in turn implies that there must be elements Xy,..., X, €
E(n,R,I) and ey,... e € {1,—1} such that

I+ Mey, = (A)X1 ... (A% X,

But for ¢« = 1,...,r" each X, can be written as a product of m; factors of the form
Z(I,+yer,)Z fory € I and Z € SL,(R) by definition of F(n, R, I) for some m;. Hence
for r :=my + - -+ 4+ m,s, we obtain a contradiction to 6, in (5). Thus 7,, is inconsistent.

Godel’s Compactness Theorem [37, Theorem 3.2| implies then, that a certain finite
subset 7;0@ C Tuv is already inconsistent. Hence there is only a finite collection of the 6,
contained in 72. So let L,, € N be the largest r € N with 6, € 7.2. For all r € N, we
have {(1) — (4),0,.1} F 6,. Hence the subset 7.} C 7, that contains all sentences in (1)
through (4) and the single sentence 6, , must be inconsistent as well.

Next, let R be a commutative ring with 1, I an ideal in R generated by the elements
S1,...,8k € R, A = (a;;) € SL,(R) and ¢ an element of the ideal (a,,)I°. This gives us
a model M of (1) through (4) and hence as 7 is inconsistent, this model must violate
the sentence 0y, (¢). But this implies the existence of elements X, ..., X, € SL,(R) as

well as the existence of yy,...,yr,, € I such that

_ -1
I, + ceq, = (A61)X1(In+y181n)X1 o (AGLM,)XLW (Intyrypein) Xp,,

Hence
||In + CelnHAJ < Luv
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holds for all ¢ € (ay,)I°. Varying u and v as appropriate one obtains for a sufficiently
large C,,(I) € N that
|1 + cernllar < Cn(1)

holds for all ¢ € I[(A)I°. O
From this, one can prove Theorem [8.1.1}

Proof. Let S ={A;,..., A} be a normal generating set of H.

Observe that as H has finite index in SL, (R), there is a normal subgroup N of SL, (R)
with finite index in SL,(R) contained in H. But if N has finite index in SL, (R), then the
subgroup

I :=={z € R|I,, + ze1, € N}

of R must have finite index in R. Furthermore, I; is an ideal in R as seen for example
from the proof of Lemma Hence E(R,n,I;) is a subgroup of N and H. But then
Proposition implies that the following inequality

[ 1n + zernl| 4, < Cn(l1)

holds for all x € [(A;)I{ and for i = 1,...,k, because I, is finitely generated as an ideal,

as R is noetherian. But this inequality implies that
Hln -+ xelnHS S Cn([l)k'

holds for all z € (I(Ay) + -+ + [(Ap)) 7.

However, observe that I; must be contained in [(A;) + -+ 4+ I(Ag) := J, because
clearly m;(A) scalar must hold for each A € H. Thus the ideal I? is contained in the ideal
(I(Ay) + - - + I(Ap))I;. Hence

11, + zeralls < Co(T)k
holds for all z € I? =: I,. Next, define the subgroup Hof H generated by
Q :={A(L, + ze;,) A" | A€ Hyx € I}

Obviously, () induces a conjugation generated word norm || - || on H. Next, observe that
as H contains the subgroup E(n, R, I;), one obtains from Theorem that there is an
ideal I3 in R such that

E(n,R,I:I;) C H C C(n, R, I3).

But I3 cannot be trivial, because H contains non-central elements. Hence H contains
the finite index subgroup E(n, R, I313) of SL,(R) and hence H itself has finite index in
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SL,,(R). But this implies according to a Theorem by myself, Kedra and Gal [19, Theorem],
that H is bounded and hence there is a natural number M (R, I,) such that

[Hllq < M(R, L)
But each element X in @ satisfies || X||s < C,,(I1)k and hence
1H||s < M(R, I)Cy(I1)k (8.1)

holds.
Further, observe that H is a normal subgroup of finite index of H. Thus the group
G := H/f] is finite. Let 7 : H — G be the corresponding quotient map and set

Y(G) :={T C G| T normally generates G}.

Then ¥(G) is finite as G is finite and hence there is a L(G) € N such that for each
T € 3(G), one has for the corresponding conjugation generated word norm || - |7 on G
induced by T that

Gl < L(G).

But S normally generates H and hence 7(5) is an element of ¥(G). Thus (|G| s < L(G)

holds. Hence for A € H there are X;,..., Xy € H and By,..., By € SU S—tu{r,}
-1 -

with W(Hf:((f) BX") = n(A). Hence A (HZLZ(IG) BZX> € H holds and thus 1) implies

L(G) L(G)
1Alls < Il T] B¥lls + 1Hls <> IBills + M(R, I)Co( 1)k

i=1 =1

However as each B; is an element of S U S~ U {I,}, one obtains
[Alls < L(G) + M(R, L) Cr(L)k

for all A € H and thus the theorem is proven, because the constants L(G), M (R, I5) and
C,(I,) depend on the ideals I; and I, = IV in R and the ideal I; does not depend on the
set S but only on the subgroup H. O]

Remark 8.1.5. The main problem in proving strong boundedness for a finite index sub-
group H of arithmetic Chevalley groups is that even if the group H is normal, one cannot
just study the normal subgroup generated by conjugacy classes with respect to SL, (R)
as we did in Chapter [3| because two elements of H might be conjugate with respect to
SL,(R) without being conjugate in H itself. This makes it necessary to study normal

subgroups of H instead or in other words, subnormal subgroups of SL,(R).
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8.2 Possible generalizations and potential future research

Generalizing strong boundedness to other groups

There are four clear avenues to generalize the statements about strong boundedness of
this thesis to other groups:

The first and most obvious one is to find other rings R that also satisfy the bounded
generation assumption by root elements property for G(®, R) with ® an irreducible root
system of rank at least 2. A clear candidate for such rings are rings of S-algebraic integers
in global fields of positive characteristic. As mentioned before, Nica has shown in [34]
that SL, (F[T]) is boundedly generated for I a finite field and it seems quite likely to me
that this holds for all rings of S-algebraic integers in global fields of positive characteristic.
Luckily enough, there has been quite a lot of research in the characteristic O-case already
and it should be possible to find such generalizations with similar arguments.

The second possible avenue is to consider the last remaining root system ® = A; and
SLy(R) for suitable rings R. For example, one could attempt to prove Conjecture [6.5.1]
The structure of normal subgroups of SLy(R) is more complicated than the one of the
higher rank Chevally groups. Yet normal subgroups of SLy(R) for R a Dedekind domains
with infinitely many units have been described completely by Costa and Keller [I3] in
terms of so-called radices. It seems likely to me that the validity of the classification results
in [13] can be shown under certain first order conditions as well and not only under the
assumption that R is a Dedekind domain with infinitely many units. This would enable
one to apply a compactness argument in a similar manner as done in Chapter 3| to obtain
certain root elements. Then one could probably finish the proof in a similar manner as
done in the case of Sp,(R) and G5(R) using bounded generation results for SLy(R) like
Theorem [6.1.5] Obviously, this second avenue, if successful could likely also work for R a
ring of S-algebraic integers in a global field of positive characteristic with infinitely many
units. This however would require to show a version of Theorem in this case.

The third avenue for generalizations is to consider other arithmetic groups entirely. I
have shown such a result in Theorem but the proof of Theorem [8.1.1] also highlights
the problem with the proof strategy as I presented it: My strategy requires to understand
the normal subgroup structure of the arithmetic group in question and I am not aware
of general results of this form. Furthermore, the corresponding result about normal sub-
groups would have to be rephrased in first-order terms as to enable the application of a
compactness argument and I am doubtful that this is always possible. But using Bak’s
concept of form ideals and form rings, one can describe the subnormal structure of cer-
tain other matrix groups, mostly higher rank symplectic and even orthogonal groups [47]
and so one can show some further generalizations of my results for these certain special
cases. Ultimately though, the strategy of understanding the normal subgroup structure

does not seem the most promising to me and I would like to prove strong boundedness
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results from results about arithmetic lattices directly. I should also mention, that lattices
can in general not be uniformly bounded as observed by Kedra, Libman and Martin [24]
Theorem 5.5]

Fourth, twisted arithmetic Chevalley groups, which according to [42] are also bound-
edly generated by root elements, might admit strong boundedness statements as well, but
I am not aware of a description of normal subgroups of these groups.

Last, there is the problem of the existence of normal subgroups. As mentioned before,
Theorem and Corollary imply together that for R a ring of S-algebraic integers
in a number field, the minimal number w(Sp,(R)) of conjugacy classes needed to generate
Sp4(R) agrees with by (Sp,(R)), if b1(Sp,(R)) is at least 1. T suspect that the same holds
for more general arithmetic lattices. For example, I think that for R a ring of S-algebraic
integers with infinitely many units, one still has w(SLy(R)) = max{1,7(R)}. Note in this
context that using Margulis Superrigidity [31, Theorem 16.1.11], one can show that the

abelianization of many arithmetic lattices is always finite though.

Asymptotics of strong boundedness

Roughly, speaking my strategy to prove strong boundedness for arithmetic Chevalley
groups consisted of first deconstructing a given finite set of conjugacy classes to obtain a
sufficiently ‘large’ subgroup of root elements in a ball of finite diameter with respect to the
corresponding conjugation generated norm and then reconstructing arbitrary elements of
the group using bounded generation results. However, both of these steps seem to require
linear in the rank of the root systems many factors. Together, this results in upper bounds
on Ay(G(®, R))/k quadratic in the rank of ® as seen in Corollary [7.1.7 However, results
for covering numbers |25, Theorem 1| as well as Corollary and Theorem for
the semi-local case indicate an asymptotic linear in the rank of ® and I believe that the
true asymptotic of Ag(G(®, R))/k should be linear in the rank of ® even in the case of
R a ring of S-algebraic integers.

To show this however, one would have to explain how to write arbitrary elements of
G(®, R) as products of the initial normal generating set S from the start without the
detour of root elements or explain how one can for A € G(®, R) write root elements
with arguments in [(A) as products of conjugates of A with a number of factors that
does not depend on the rank of ®. Both of these things are reasonably easy to do if R
is a field, however for R a ring of S-algebraic integers one arrives at a bit of an impasse,
because of the absence of a neat decomposition like the Bruhat decomposition for fields.
Furthermore, excluding the case Go(IFy), for a field it is enough to find a single none-trivial
root element to get all the other ones.

If R is at least a principal ideal domain, one can actually use the Bruhat decomposition
[41, Chapter 8, p. 68, Corollary 1| that I use in Chapter |4| to cut down on the number of
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root elements needed to write a group element in a similar manner as in the field case and
I will do so in a future paper. However, in contrast to the field or the semi-local case this
is not enough, because one must also accumulate enough root elements such that their
respective arguments are coprime.

Ultimately, the asymptotics for Ay provided in this thesis are difficult to improve out-
right for Chevalley groups and presumably other lattices, not only because the underlying
ring might fail to be a principal ideal domain, which is a minor issue, but also because
one needs to potentially involve all entries of a given element of a normal generating set
and cannot focus on a number of entries independent of the rank of ® as was done in the

proof of Theorem and more research is needed to resolve these questions.
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Appendix A

Root systems and Weyl groups

This section is lifted almost verbatim from the appendices of Humphreys book [21] and

Steinbergs book [41]. First, root systems are defined as follows:

Definition A.0.1. Let (V,(-,-)) be a finite-dimensional, euclidean vector space. Then a

subset & C V' — {0} is called a root system, if ® satisfies the following assumptions:
1. The set ® spans V' as a R-vector space.

2. If o € &, then RanN® = {o, —a}.

3. For any a, € @, the element w,(8) := 5 — 2{28) o is also an element of ®.

a,a

—
=

9 (@)

(a,@)

4. For any «a, € ®, the number (3, a) : is an integer.

The elements of ® are called roots and the dimension of V' the rank of the root system.

Let @ be a root system of rank n. A Z-linear independent subset II = {ay, ..., a,} of

® with the property

® = <<I> N é} Noai) U (CD N é(—No)ozZ»)

is called a system of (positive) simple roots. Fixing a system of simple roots II in a root
system @, the elements in (® NP, Nooy;) are called the positive roots of @, the set
usually denoted by ®*, and the elements of (® NED;_,(—Np)a;) are called the negative
roots of ®, the set usually denoted by ®~. Furthermore, if ¢ € ® is equal to >, | ki,
then wt(¢) := | Y"1, k;| is called the weight of the root ¢.

Further, for ® a root system and o € ®, the maps w, : V = Vo — v — 2%& are
isometries of (V, (-,-)). The subgroup W(®) of Isom(V, (-,-)) is the group generated by
elements of the form {w,|a € ®}. The Weyl group W (®) acts on the root system . It
is clear that for II a system of simple roots and w € W (®), the set w(II) is also a system

of simple roots.
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Proposition A.0.2. Let ® be a root system of rank n.

1. Systems of simple roots in ® exist and the Weyl group W (®) acts simply, transitively
on {II|IT a system of simple roots in ®}.
2. For Il ={aq,...,a,} a system of simple roots, set for 1 <i#j<mn

(
s Zf<I A, O :7T/2

=
A
8
S
I
3

~

130

2 (i, o)

3 ( ) =2
4, if <oy, ;) =31/4
6 ( )=5

el 7;f<IOéi,Oéj =

and m;; = 1. Then W(®) is generated by {wa,, ..., ws, } and

W(®) = (way, -y Wa, |V1 <i < j <nt (W, wa,)™ = 1)

Remark A.0.3. For Il = {ay,...,a,} a system of simple roots in ® the reflections

Weayy - -+, Wy, are called fundamental reflections in W (®).

There is an obvious concept of isomorphism of root systems and direct sums of root
systems. A root system is called irreducible if it is not isomorphic to the direct sum of two

non-trivial root systems. A common tool to describe root systems are Dynkin diagrams:

Definition A.0.4. Let ® be a root system and II a system of simple roots of ®. Then
the Dynkin diagram D(®) of (®,1I) is the directed multigraph defined as follows:

1. The vertices of D(®) are the elements of II.

2. For o, B € Il with a # [ the edge {«, 5} is contained in D(®), if («, 3) # 0 and the
multiplicity of the edge is |{a, 8) - (5, @)|.

3. All edges are undirected except the ones connecting simple roots of unequal length.

They are directed to start in longer roots and are marked by arrows.

All systems of simple roots of ® differ by an element W (®) according to Proposi-
tion and hence the isomorphism type of the multigraph D(®) does not depend on
the particular system of simple roots II used to define it. Hence we will usually omit
specifying the system of simple roots.

For a semi-simple, complex Lie group G there is an action of its Lie algebra g on itself
denoted by ad : g — End(g). For a maximal abelian subalgebra h of g, the elements
of h map to diagonalizable elements of End(g) under ad and as b is abelian they are

simultaneously diagonalizable. Phrased differently, g decomposes as the direct sum of
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simultaneous eigenspaces
9o == {X € g|VH € b:ad(H)(X) = a(H)X}
for certain linear maps o : h — C. Set
¢ :={a:h— Clg, # {0} and a # 0}

and let V' be the subspace of Hom(h, C) generated by ® as an R-vector space. Further,
one defines the Killing-form B : g x g — C for X, Y € g as follows:

B(X,Y) := tri(ad(X)ad(Y)).

The bilinear form B defines a non-degenerate, symmetric bilinear form on . Thus for
each o € ® there is a unique H! € b such that B(H, H!) = «a(H) holds for all H € b.

Then one can define a scalar product on V' by setting
(o, B) := B(H,, Hp)

for o, 6 € ®. This yields ® as a root system in (V,(-,-)) and if G is simple, then & is

irreducible.

Proposition A.0.5. An irreducible root system ® is determined up to isomorphism by its
Dynkin diagram D(®). Further, the Dynkin diagram D(®) of any irreducible root systems
® is one of the following:

A, : O O O
B, : O O 20)
Ch O O+ O

O
D, O O O
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EGI G

O

D)
O
O

O

IS
O
O
O
O
Oo—O
O
O

Fy: O O >O O
Gy : C————=0

Further each of those diagrams s realized as the Dynkin diagram of the root system ®

of a simple, complex Lie-group.

Remark A.0.6. The root systems A,,, B, C,, and D,, are commonly referred to as classical
root systems, because they arise as root systems of familiar complex matrix groups. On
the other hand, the root systems FEg, Er, Eg, F, and G5 are commonly referred to as

exceptional root systems.

Proposition A.0.7. Let ® be a root system, I1 a system of simple roots and o € ®. Then
there is a f € Il and a w € W(®) with w(a) = B.

Proposition A.0.8. Let ® be an irreducible root system, o € ® be given and let § € 11
have the same length as a. Then there is a w € W(®) with w(a) = . Phrased differently,
the equivalence relation on ® induced by the action of W (®) has one equivalence class for

each root length present in ®.

Proof. According to Proposition there is an element w € W(®) with w(«a) € 11
Thus we may assume that « is also an element of II. According to Proposition [A.0.5]
for two elements of IT of the same length, there is a path in D(®) only passing through
elements of II of the same length. Phrased differently, we may assume that & = A,, for
n > 2. So by induction on n, it suffices to consider the case ® = A, and that the positive

roots in ® = A, are o, f and a + (3. The claim now follows as

wawp(a) = we(a +F) =

holds. O
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Appendix B

The permutation group Sg and Sp,(IF9)

In this Appendix, we collect some statements about Sp,(IFy) that are used in Chapter |§]
and Chapter |7} First, we note the following fact:

Proposition B.0.1. There is a unique isomorphism 6 : Sp,(Fs) — Sg with

0(ea(1)) = (1,2)(3,4)(5,6),0(c-a(1)) = (1,3)(2,5)(4,6)
0(e5(1)) = (4,6),0(c-5) = (5,6).

Proof. We define 6(g,(1)) as follows:

0(ea(1)) = (1,2)(3,4)(5,6),0(e—a(1)) = (1,3)(2,5)(4,6)
0(es(1)) = (4,6),0(c—5(1)) = (5,6)

O(ears(1)) = (1,2)(3,5)(4,6),0(ca—p(1)) = (1,3)(2,4)(5,6)
0(e2015(1)) = (1,2),6(¢-20-5(1)) = (1,3)

Using [41, Chapter 6, p. 43, Theorem 8| and the fact that all permutations described
above have order 2, we obtain that 6 extends to a homomorphism 6 : Sp,(Fs) — Sg if the
following conditions are satisfied for all ¢,y € Cy :

—
>
—~
™
©-
—~
—_

), 0(e4(1))) = L if {¢ + ¢} = (Zs0¢ & Zsptp) N Cy
(ey(1)) =1L if ¢+4p ¢ Crand ¢+ # 0
))) = 0(ep14(1))0(e-(1)), if ¢+ 9 € Cy and 7 = ¢ +2¢ or 29 + ¢ € (.

—~
> D
e
™ ™
©- hASS
—~
— —
~ ~—
~— ~—
> D
—~
™
<
—~
—_

But note that 6(c_4(1)) = [(2,3)(5,4)]0(e4(1))[(2, 3)(5,4)] ! holds for all ¢ € Cy. Thus to
see that 0 extends to a homomorphism it suffices to show the conditions in the case that
¢ is positive.

Next, we go through the various possibilities for ¢ and . First assume ¢ = «. For
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the first case take ¢ = 3. But indeed

(0(ea(1)),0(e5(1))) = [(1,2)(3,4)(5,6)] - (4,6) - [(1,2)(3,4)(5,6)] " - (4,6) = (3,5)(4,6)
1,2)

|
—~
—_
[\
~—
—~
w
ot
~
—~
>~
D
~—
—~
[\
|
>
—~
™
Q
+
iy
—~
[u—
~—
~—
>
—~
()
[\
Q
+
is
—~
—
~—
~—

holds. Further, for v = o +

(9(611(1))7 6<5a+ﬂ(1>>> = [(17 2)(37 4)<57 6)} ’ (17 2)(37 5) (47 6) ' [(17 2) (37 4)(57 6)]_1
(1,2)(3,5)(4,6) = (2,1)(4,6)(3,5) - (1,2)(3,5)(4,6) = 1

holds and for 1) = 2 + 3 one obtains
(0(ea(1)), Ble2ars(1))) = [(1,2)(3.4)(5.6)] - (1,2) - [(1,2)(3,4)(5,6)] " - (1,2) = 1,
For the case 1) = —3, we obtain
(0(ea(1),0(=—(1))) = [(1,2)(3.4)(5,6)] - (5.6) - [(1,2)(3,4)(5,6)] " - (5.6) = 1
and for the case ¢ = —a — 3, we obtain

(0(ea(1)), 0(e—a-s(1))) = [(1,2)(3,4)(5,6)] - (1,3)(2,4)(5,6) - [(1,2)(3,4)(5,6)] "

Lastly, we obtain for the case ¥ = —2a — (3 that

(0(ea(1)), 0(e-2a-5(1))) = [(1,2)(3,4)(5,6)] - (1,3) - [(1,2)(3,4)(5,6)] " - (1,3)
= (2,4)(1,3) = (1,3)(2,4)(5,6) - (5,6) = 0(e—a-5(1))0(c-5(1)).

This finishes the case ¢ = «. Further note that all of the previous commutators have order

at most two and hence the previous calculations also settle the cases

(¢,¢) € {(B,a), (@ + ,a), 2a+ §,a)}.

Further, using the fact that 6(c_4(1)) = [(2,3)(5,4)]0(e4(1))[(2,3)(5,4)]* holds for all

¢ € (5, these calculations also settle the cases

(¢7¢) S {<67 —Oé), (Oé—f—ﬁ, —Oé), (20[ ‘f‘ﬁ’ —Oé)}

Next, consider the case ¢ = 3. First, consider ¢ = a + 5. Indeed
(9(5ﬁ<1))7 ‘9(5O<+5(1))) = [(1’ 2)(37 5)(4’ 6)] ’ (47 6) ) [(17 2)<37 5)(47 6)]_1 ’ (47 6) =1
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holds. Next, assume ¢ = 2« 4+ § and indeed

(6(e5(1)), 0(e2a15(1))) = (1,2) - (4,6) - (1,2) - (4,6) = 1

holds. Next, assume ¢y = —a — 3. Then

(0(e5(1)), 0(e—a-p(1))) = [(1,3)(2,4)(5,6)] - (4,6) - [(1,3)(2,4)(5,6)] " - (4,6) = (2,5)(4,6)
= (17 3) ) (17 3)(27 5)(4’ 6) = 0(5—20—5(1))9(5—a(1)>

holds. For v = —2a — 3, we obtain
(9(6[3(1))70(8_2,1_5(1))) - (173) ' (476) ’ (1’3) ' (476) =1L
This settles the case ¢ = 8 and similarly to the case ¢ = «, also settles the cases of

(¢, ¢) € {(a+8,8), 2a+ B,8), (a + B,=B), 2a+ B, —5)}-

Next, consider the case » = a+ . The only remaining cases for this ¢ are ¢ = 2a+ (3
and ¥ = —2a — 3. Observe that

(0(cars(1)),0(22015(1))) = [(1,2)(3,5)(4,6)] - (1,2) - [(1,2)(3,5)(4,6)] 7" - (1,2) = 1
and

[(1,2)(3,5)(4,6)] - (1,3) - [(1,2)(3,5)(4,6)] " - (1,3)

(0(ea+s(1)), O(e—2a-5(1))) ,
(27 5)(17 3) = (47 6) ) (17 3)<27 5)(47 6) = 9(513(1))0(5—&(1))‘

This settles the case ¢ = a+ [ and by similar considerations as in the previous cases also

settles the cases

(0,v) € {2a+ B,a+ ), 2a + B, —a — )}

We are left with the case ¢ = 2a+ 3, but all possibilities for ¢ have already been addressed

in the previous cases. Thus indeed 6 extends to a homomorphism
0 : Sp4(F2) — Sﬁ.

Next, we will show that € is surjective. To this end let H be the image of 6. Note that
Se is generated by its transpositions (i, ) for 1 <i < j < 6 and further

(6,4)(6,) = (4, )
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holds. Thus Sg is generated by the transpositions (6,4) for 1 < i < 6. Hence to show the
surjectivity of € it suffices to prove that all transpositions (6,7) for 1 <i < 6 are elements
of H. To this end observe that

0(ca(1)0(5(1)0(ca(—1)) = [(1,2)(3,4)(5,6)] - (4,6) - [(1,2)(3,4)(5,6)] " = (3,5)

—
n
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@
f—
=
@
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o]
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=
)
)

—~

w
ot
~
>

—~
"

i<

—~
—_

~—

~—

—~
w
ot

I
—~
w

(@)
~—

—~

ot

(@)
~

—~

w

(&)
~—

I
—~
w

(@]
~—

(o)

wn

&

=

H as well. But then

0(ea(1))0(e-5(1))(3,4) = (1,2)(3,4)(5,6)(5,6)(3,4) = (1,2)

is an element of H. Similarly

0(c-a(1))0(e-5(1))0(e—a(—1)) = (1,3)(2,5)(4,6)(5,6)[(1,3)(2,5)(4,6)] " = (2,4)

is an element of H and so (2,4) - 0(ez(1)) - (2,4) = (2,4)(4,6)(2,4) = (2,6) is an element
of H. Thus (1,2)(2,6)(1,2) = (1,6) is an element of H. So, indeed all the transpositions
(1,6),(2,6),(3,6),(4,6) = 6(e5(1)) and (5,6) = O(c_pg(1)) are elements of H and so
H = S holds and hence @ is surjective.

On the other hand, Sg has 6! = 720 elements and Sp,(F2) has

24 (22 -1)- (2" -1)=16-3-15="T720

elements according to [41, Chapter 9, p. 77, Theorem 25|. Thus 6 can only be surjective,
if it is injective as well and this finishes the proof of the existence of an isomorphism 6 as
described. However, uniqueness of 8 is clear, because {e4(1)|¢ € Cs} is a generating set
of Sp,(Fy) and 6 is defined on them. O

Remark B.0.2. The group Sp,(F2) acts on the set of maximal subsets M of F3 — {0} with
the property that any two distinct v, w elements of M have the property w(v,w) = 1 for
w the symplectic structure fixed by Sp,(F2). There are six such sets M and an analysis

of the permutation of those six sets by Sp,(F2) yields the isomorphism 6.

Next, we show:

Proposition B.0.3. Let ¢ € Cy be given. Then E := £4(1) normally generates Sp,(F2)
and ||Spy(Fa)||z = 5 holds.

Proof. First, after conjugation we may assume that ¢ is a positive simple root in Cs.

Then as mentioned in [41, Chapter 86, p. 86, Example (b)|, there is an automorphism j
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of Sp,(F2) with

J(ea(1)) = e5(1).

Hence we may further assume that ¢ = 5. Then using the isomorphism 6 from Proposi-
tion implies that we have to show that the transposition (4,6) normally generates
S and that ||Sg||(1,6) = 5 holds. However, the group Sg has only three normal subgroups
{1}, A and S and (4,6) is not an element of Ag and hence must normally generate Sg.
Obviously, any conjugate of a transposition is again a transposition and hence it suffices
to show that there are elements in Sg that cannot be written as a product of four trans-
positions to prove ||Ss/(4,6) > 5. To see this, observe that for o € Sg, the number of orbits
of the induced group action of (o) on {1,...,6} only depends on the conjugacy class of
o in Sg instead of on the permutation o itself. However, for k € {1,...,5}, a product
of k transpositions in Sg has at least 6 — k such orbits in {1,...,6}. Thus the cyclce
(1,2,3,4,5,6), which gives rise to just one such orbit, cannot be written as a product of
at most 4 transpositions.

But [7, Lemma 2.05, Lemma 2.06, Lemma 3.01] implies that the covering number of

S 1s at most 5 and hence
5 < [|S6l(16) < A1(S6) < en(S6) < 5.

This finishes the proof. O
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Appendix C

Various proofs

Lemma The sequences

1. S1 = (wa7w67w¢7wﬂ>w57w’yawa7we7wd>7wﬁ7w§7w’yawavwevw¢>wﬁ7w57w’yawa7we) and
2. S9 = <w5>w,37w¢7w€7wa7w’va57wﬁvw¢7w67waaw’yaw(Sywﬁaw(ﬁ)

of fundamental reflections in W (FEs) give minimal expressions for the corresponding Weyl-

group elements wy, wy € W(Eg) with respect to the fundamental reflections and

wi(x) = wa(x) =7 and T(y) = Ef —{a,8,0,¢,¢,a+ 3,0 + ¢}

Proof. One notes that the sequence s; appears as a subexpression of the sequence given
for the longest word wg € W(FEs) in Lemma Thus s; must be a minimal expression
for its corresponding Weyl-group element w;, because otherwise the expression for wy
could be shortened. Similarly, it follows that s, is a minimal expression.

We denote the positive simple roots «, 5,7,0,¢,¢ by 1,2,3,4,5 and 6 and recall that

the corresponding Dynkin diagram looks as follows

P OO —O—O—0

O,

For convenience and later reference, we arrange the positive, roots of Eg into a Hasse-

diagram where the vertices are the positive, roots of Fg and the label of the vertex denotes
how often the corresponding simple root appears in the expression of the root/vertex in
question. For example, the label (1,1,1,0,0,1) denotes the root a+ 3 + v + ¢. The label
on the edge of the diagram denotes what simple root is the difference between the two
roots adjacent to the edge. Furthermore, the list of positive roots of Fs to be arranged

into the Hasse-diagram is taken from [I8, Appendix, Table B, p. 528|.
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122211

112111
111111 112101
5
[111101] [Olllllj [111110] [012101]
6

111100 111001 || 011101 011110 001111

4 | 1\ 6 1\6 2 > 576

122101
012111

111000 011100 || 011001 001101 001110

3#1\ L: : 276 4
110000] [011000][001100] 001001 000110

L\L 4 3 6
[100000] [010000][001000] [000100] [000001] [000010]

Because the calculation of wi(x) is rather lengthy, we will only show w;(x) = 7. To

this end, observe that Fg is simply-laced and so if 1 € E and 6 a positive, simple root
are given, then wy(v)) is either ¢ + 6,1 — 0 or ¢, depending on whether the vertex of
the Hasse-diagram corresponding to 1 is incident to an edge labeled by # connecting to a
vertex of higher or lower weight respectively or is not incident to an edge labeled by 6 at

all. Observe as a consequence:

W1 (X) = WaWeWgWEWsWoyWa WeWhWRWsWaWaWWWWsWAWaWe (v + 25 + 37 + 20 + € + 2¢)
= WaWWpW W W Wa WWsWEWsWA W W Wy (. + 25 + 3y + 20 + € + 2¢)
= Wo W W HW WS WA W W WHWaWsWAWaWe (e + 26 + 37 + 20 + € + ¢)
= WaWWpWEWsWa W WWyWaWsWo (0 + 20 + 37 + 25 + € + ¢)
= WaWWHW W WA WaWWsWaWs (0 + 25 + 27 4+ 20 + € + ¢)
= W WWyWWs WA W W Wywa(a + 28 + 2y + 5+ € + ¢)
= W WWHWWsWA W W Wy (ot + S+ 27 + 0 + € + @)
= W WWHWaWsWAWoWwe (v + S+ 27 + 5 + € + )
= WaWWgWaWsWAWo (a4 f+ 27+ 0 + ¢)
= WaWWswawsw~ (5 + 2y + 8§ + ¢)
= WaWWewaws (B + 7+ 6+ @)
= wawwsws(B + 7 + @)
= Wawewy(y + @) = wawe(y) =7
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The fact that T(y) = Ef — {a,3,0,¢,6,a + 3,0 + €} can be seen by inspection of the

Hasse diagram. O]
Lemma Let R be a principal ideal domain. Then R has stable range at most 2.

Proof. Let m > 2 be given and let vy, ..., v, € R be given with (v,...,v,) = R. Let S
be the prime divisors of (vq,...,v,,) and let T be the prime divisors of (vs, ..., v,,) that
are not also prime divisors of v;. Obviously T and S do not intersect. So according to the

Chinese Remainder Theorem, there is a x € R such that

VpeS:x=1modp
VgeT:2=0mod g

Then consider the ideal I := (v; —zvp, va, ..., vy) in R. Assume that this is ideal is not R.
Then there is a prime divisor h of I. Then clearly h divides the ideal (vo,...,v,,) as well.
But if h would not divide vy, then it would be an element of 7" and hence h divides x. But
h also divides vy — xvg, so we can conclude that h must also divide vy, a contradiction.
So h must divide vy.

But if h divides vy, then h is an element of S. Further A also divides v; — xvy and so h

also divides xvy. But h is an element of S, so we have x = 1 mod h and so in particular
vo=1-v9=2xv9 =0 mod h

follows. So h also divides vy and so h divides (vg,v1,...,v,) = R, a contradiction. Thus
(v — xvg, Vo, ..., Uy) = R holds. O

Proposition Let D be a square-free integer, R’ the ring of algebraic integers in
the number field Q[\/E] and S a finite set of non-zero prime ideals in R'. Define

R:={a/bl a € R';b € R — {0}, { prime divisors of bR'} C S}.

Then R is 2R—pseudo-good if and only if at least one of the following conditions hold
1. The set S contains a prime-divisor of 2R or
2. D=5 mod8 and D >0 or
3. D=5 mod8 and S # 0 or
4. D =-=3.

Proof. First, we will show that at least one of the above conditions must hold if R is
2R-pseudo-good. Observe that R being 2R-pseudo-good implies that R/2R must be a

field or trivial. Hence 2R must be either be a prime ideal in R or 2 must be a unit. If 2
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is a unit in R, then S contains all prime-divisors of 2R’ and this corresponds to the first
condition.

So we may assume that 2R is a prime ideal in R. According to |28, Theorem 25| in
the ring of algebraic integers R’ there are three possible options for the behaviour of the
ideal 2R’ :

1. 2R’ is inert precisely if D =5 mod 8.
2. 2R’ ramifies precisely if D = 2,3,6,7 mod 8.
3. 2R’ splits precisely if D =1 mod 8.

Assume first that 2R’ is already a prime ideal in R’, then D = 5 mod 8. If D > 0, then
we are in the second condition. So assume D < 0. If S = (), then R = R’. Note, that all
rings of quadratic integers for negative D have only two units if D # —3, namely 1 and
—1. But the quotient R/2R has four elements, so if S = () and D < 0, then R can only
be 2R-pseudo-good if D = —3. This corresponds to the fourth condition.

So we may assume D < 0, D = 5 mod 2R and S # (). This corresponds to the third
condition.

Second, assume 2R’ ramifies and choose a prime P with 2R’ = P2. But 2R is a prime
ideal. There are two options now: Either S contains P or not. But if S contains P, then
2 is a unit and we assumed that is not the case. But if S does not contain P, then 2R
is not a prime ideal, because it has the prime-divisor RP of multiplicity 2. So this case
cannot occur.

Third, assume 2R’ splits and choose two distinct primes Py, Py with 2R’ = Py - Py, If
S does not contain P; or Ps, then 2R is still not a prime ideal in R, because it has the
two distinct prime divisors RP; and RPs. So for R to be 2R-pseudo-good, the set S must
contain at least one of the prime-ideals P; or Py and this corresponds to the first condi-

tion. So at least one of the conditions named is necessary for R to be 2R-pseudo-good.

Next, we are going to show, that they are also sufficient. First assume, that S contains
a prime-divisor P of 2R’. Either 2R’ is inert, ramified or split. If 2R’ is inert, than P = 2R’
and hence 2 is a unit in the localization R. Thus R is trivially 2R-pseudo-good. Similarly,
if 2R/, ramifies, then R is also 2R-pseudo-good. On the other hand, if 2R’ splits, say
as 2R = PP, then we may assume P = P,. But then in the localization R, we have
2R = RPy and so R/2R = R'/P; = Fs. But clearly {1,0} are a set of coset representatives
of 2R in R showing 2 R-pseudo-goodness.

Second, assume D = 5 mod 8 and D > 0. In this case 2R’ is a prime-ideal and so we
may assume 2R’ ¢ S. Furthermore, we have R/2R = R'/2R' = F4. Thus it suffices to
consider the case S = 0. As D > 0 and S = ) holds, according to [32, Corollary 11.7] the
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group of units R* of R is equal to the direct product {1, -1} x {u*|k € Z} for a u € R*
called afundamental unit.

We will show 2R-pseudo-goodness, by demonstrating that for this fundamental unit
u € R*, the set {0,1,u,u'} is a set of coset-representatives of 2R in R. To prove this
it suffices to show u # 1 mod 2R, because clearly both ' = 1 mod 2R and u™! =
u mod 2R would imply v = 1 mod 2R. So, choose a,b € Z such that

u_a+b\/5
=—

First, a is odd, because otherwise both a and b would be even and hence 2 would divide
u, which is impossible, because u is a unit and hence has no prime divisors.
Thus trg/pp(u) = a is an odd integer. Furthermore Ng /p0(u) is either 1 or —1.

Hence both coefficients of the characteristic polynomial
Xu(T) = T? — tropmy0(W)T + Nopypyo(w) = T? —aT +1 € Z[T)
are odd. Thus the image @ of u in R/2R satisfies the polynomial equation
0=u"+u+1

But an element @ with this property cannot be equal to the image of 1 in R/2R. Hence
if D=5 mod 8 and D > 0, then R is 2R-pseudo-good.

Third, assume D = 5 mod 8 and S # (). Further we may assume D < 0 and that S
does not contain 2R’. Then pick a prime P € S and an element u € P without other

prime-divisors apart from P. Further pick a,b € Z with

_a—l—b\/ﬁ
=—F

u

If a were to be even, then as before we would obtain that 2 would divide the element u,
which would imply 2R’ = P, a contradiction to 2R’ not an element of S. So t?n@[\/ﬁ]|@(u) =
a must be an odd integer. On the other hand

a+bv/Da—b/D
N@[\/EHQO”L) - 9 9 :

is an element of P NZ. However, if there were a k € Z with Ny, /50(u) = 2k, then this
would imply u € 2R" and this is impossible, because it would imply 2R’ = P again. Thus
Nojypjjo(u) is necessarily an odd integer. But trg /5 o(u) and Ny pq(u) both being

odd integers implies again that the image @ of w in R/2R solves the equation
O=u"+u+1
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and hence u # 1 mod 2R. But u is a unit in R and this implies as before that {0, 1, u,u ™'}
is a set of coset-representatives of 2R in R showing 2 R-pseudo-goodness of R.

Lastly, assume D = —3. We may assume S = () and hence R’ = R. Observe that

1++v-3
u::%ER

is a unit in R and that {0,1,u,u"'} is a set of coset-representatives of 2R in R demon-

strating 2 R-pseudo-goodness of R. ]
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