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Abstract

This thesis is concerned with the diameter of certain word norms on S-arithmetic split

Chevalley groups. Such groups are well known to be boundedly generated by root el-

ements. We prove that word metrics given by conjugacy classes on S-arithmetic split

Chevalley groups have an upper bound only depending on the number of conjugacy classes.

This property, called strong boundedness, was introduced by K¦dra, Libmann and Martin

in [24] and proven for SLn(R), assuming R is a principal ideal domain and n ≥ 3.We pro-

vide two ways to prove such results: First, a general argument using older results about

normal subgroups of Chevalley groups and model-theory. Second, we provide two argu-

ments to show this by way of explicit calculations for the examples of Sp2n(R) for n ≥ 2,

E6(R) and G2(R). We also provide examples of normal generating sets for S-arithmetic

split Chevalley groups proving our upper bounds on the afore-mentioned word norms are

sharp in an appropriate sense and give a complete account of the existence of small nor-

mally generating sets of Sp4(R) and G2(R). For instance, we prove that Sp4(Z[1+
√
−7

2
])

cannot be generated by a single conjugacy class.
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Chapter 1

Main results and historical context

1.1 Historical context

Conjugation-invariant norms on groups are an old, if slightly non-standard topic in math-

ematics. They are de�ned as follows:

De�nition 1.1.1. Let G be a group. Then a conjugation invariant norm on G is a map

ν : G→ [0,+∞) such that

1. for a ∈ G : ν(a) = 0 holds precisely if a = 1.

2. for a, b ∈ G : ν(ab) ≤ ν(a) + ν(b), ν(aba−1) = ν(b) and ν(a) = ν(a−1).

The group G is called bounded, i� for all conjugation invariant norms ν on G the diameter

ν(G) is �nite and unbounded if this is not the case.

A well-known example for such norms are bi-invariant Riemannian metrics on a com-

pact Lie-group G, which naturally have �nite diameter, because Riemannian metrics are

continuous and G is compact. However, more often than not in the study of conjugation

invariant norms, the topology induced by those norms is not the `natural' topology of the

corresponding group in question. A striking example of this is the Hofer-metric on the

hamiltonian di�eomorphism groups:

If (M,ω) is a symplectic manifold, then let H : M × [0, 1] → R be a compactly

supported smooth map and de�ne vector �elds {Xt}t∈[0,1] of the form

ιXtω = dH(·, t)

for t ∈ [0, 1] and consider the corresponding �ow ft : M →M for t ∈ [0, 1]. Such di�eomor-

phisms ft are called hamiltonian di�eomorphisms and the function H is said to generate

the di�eomorphism f1. The hamiltonian di�eomorphisms form a group Ham(M,ω) and
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this group admits the so-called Hofer metric:

‖f‖H := inf
H generatesf

∫ 1

0

(max
x∈M

H(x, t))− (min
y∈M

H(y, t))dt.

This norm is conjugation invariant, but the natural C1-topology on Ham(M,ω) is �ner

than the topology induced by the Hofer-metric. The Hofer metric has been widely stud-

ied by Polterovich [36], Wagner and Ostrover [35] and many others and it is connected

to various problems in symplectic topology and hamiltonian dynamics. Also beyond a

couple of examples, like closed surfaces for which the diameter is unbounded [36, Corol-

lary 7.2.D], it is not even known whether the Hofer metric has �nite or in�nite diameter in

general. There are also other conjugation-invariant norms on Hamiltonian di�eomorphism

groups as discovered by Viterbo [46] and conjugation invariant norms on contactomor-

phism groups found by Sandon [38],[39].

Less geometrically, there exist the so called fragmentation norms on compactly sup-

ported di�eomorphism or homeomorphism groups of manifolds. For example, the frag-

mentation norm on the homeomorphism group of a manifold, measures how many home-

omorphisms supported in an open ball on this manifold, one needs to write a given

compactly supported homeomorphism. So there are quite a lot of examples of such norms

in geometry and topology. More algebraically, one can use these norms to study group

theoretic properties of a group. For example the boundedness of a group is connected to

quasi-morphisms:

Lemma 1.1.2. [8] Let G be a group that admits an unbounded quasi-morphism q : G→ R,
meaning there exists a D ≥ 0 called the defect of q such that for all a, b ∈ G

|q(ab)− q(a)− q(b)| ≤ D

holds and the set q(G) is unbounded. Assume further that there is a �nite subset S ⊂ G

with 〈〈S〉〉 = G. Then G is unbounded.

Proof. De�ne a conjugation invariant norm ‖ · ‖S : G→ N0 by

‖a‖S := min{n ∈ N0| g1, . . . , gn are up to conjugation elements of S∪S−1 and a = g1 · · · gn}

for a 6= 1 and by ‖1‖S := 0. Further for a ∈ G the limit

q∞(a) := lim
n→∞

q(an)

n

is well-de�ned and de�nes a conjugation-invariant quasi-morphism q∞ : G→ R, that is

q∞(aba−1) = q∞(b)
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holds for all a, b ∈ G. Further, q∞ is invariant under inverses and still unbounded.

We leave these claims as an excercise to the reader. So q itself can be assumed to be

conjugation-invariant and with defect D. Also choose K := max({|q(s)| | s ∈ S} ∪ {D}).
The number K is greater than 0 : This is the case because if D can be chosen as 0, then

q : G → R is a homomorphism. Hence if ‖q(s)‖ = 0 and so q(s) = 0 were to hold for all

s ∈ S as well, then the fact that the conjugacy classes of S generate G and R is abelian

would imply that q(G) = {0} and so q would not be unbounded. Next, let a ∈ G − {1}
be given with ‖a‖S = n and choose s1, . . . , sn ∈ S ∪ S−1 and g1, . . . , gn ∈ G with

a =
n∏
i=1

gisig
−1
i .

Then observe

|q(a)| = |q(
n∏
i=1

gisig
−1
i )| ≤ (n− 1)D +

n∑
i=1

|q(gisig−1
i )|

= (n− 1)D +
n∑
i=1

|q(si)| ≤ nD + nK −D ≤ 2nK = 2K‖a‖S.

But q is unbounded and K > 0, so ‖ · ‖S is unbounded as well.

Further, one can show the following using a similar argument:

Lemma 1.1.3. Let a group G with a �nite subset S with 〈〈S〉〉 = G and a group H with

a conjugation invariant norm ν be given and let ψ : G→ H be a homomorphism. Further

set K := max{ν(ψ(s))| s ∈ S}. Then for all g ∈ G :

ν(g) ≤ K‖g‖S.

This implies for example that a bounded group generated by �nitely many conjugacy

classes, when acting by a hamiltonian group action on a symplectic manifold (M,ω) must

have bounded image in Ham(M,ω) with respect to the Hofer-metric. These lemmas also

indicate the importance of the so called conjugation generated word norms ‖ · ‖S for S a

�nite set. One can ask more generally how such conjugation generated word norms ‖ · ‖S
on a group G behave. For example, does the diameter ‖G‖S of ‖ · ‖S being �nite depend

on the S in question or not? This is not the case:

Lemma 1.1.4. [24, Corollary 2.5] Let a group G with a �nite subset S with 〈〈S〉〉 = G.

Then G is bounded precisely if the diameter of the conjugation generated word norm ‖ · ‖S
is �nite.

However, boundedness is still not a property that is well behaved from a geometric

group theory viewpoint. For example boundedness of a group does not pass to �nite index
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sub or supergroups in general.

Lemma 1.1.5. [24, Example 2.8] The group D∞ = F2 ? F2 is bounded and its index

2-subgroup Z is not.

It is well-known that the kernel ker(j2
G) of the comparison map j2

G : H2
b (G,R) →

H2(G,R) between bounded cohomology in degree 2 and ordinary group cohomology is

isomorphic to the space of homogeneous quasi-morphisms q : G → R modulo the space

of actual homomorphisms q : G → R. Thus a group being bounded implies that j2
G is

injective. However, these two properties are not equivalent: Each homogeneous quasi-

morphism Z→ R is a homomorphism and so j2
Z is injective, but the group Z is obviously

unbounded.

On the other hand, there is a classical result due to Burger and Monod [9, Corollary 1.3]

stating the injectivity of j2
G for cocompact, irreducible lattices G in higher rank Lie groups

and in a lot of cases one can also show that a lattice is bounded using straightforward

calculations in the lattice itself as done by Gal, Kedra and myself [19]. To my knowledge,

it is an open problem whether all lattices in groups of higher rank are bounded.

Assuming that a group is bounded, one can further ask how the diameter of G with

respect to ‖ · ‖S depends on the chosen �nite set S normally generating G. If G is a �nite

simple group, this is related to the classical question of covering numbers: For such a

group G, its covering number cn(G) is the smallest natural number n ∈ N such that for

every non-trivial conjugacy class C, one has G = Cn. If S 6= {1} is a subset of the �nite,

simple group G, then ‖G‖S ≤ cn(G) holds. Covering numbers have been extensively

studied for various kind of �nite simple groups for example Brenners FINASIG-papers

[7] contain various di�erent covering results for di�erent �nite simple groups, Lev's paper

[26] contains covering results for PSLn(K) for su�ciently large �elds K and [4] is a survey

about covering numbers containing various standard arguments and a table of covering

numbers for all �nite, simple groups with less than 1.000.000 elements. More recently,

there have been a couple of remarkable papers about the asymptotics of covering numbers

for �nite simple groups by Liebeck and his collaborators [27],[25].

However, the �rst paper that studied conjugation invariant norms on groups named

as such is presumably the Burago, Ivanov and Polterovich paper [8]. The paper estab-

lishes some general facts about conjugation invariant norms, their connection to quasi-

morphisms and boundedness and uses these norms to determine commutator lengths on

various di�eomorphism groups of spheres and 3-manifolds. More importantly, the line of

ideas that lead to this thesis started with [8, Example 1.6]. There it was observed that

the group SLn(Z) is bounded for n ≥ 3. This follows from two facts: First, the following

delightful commutator formula for elementary matrices:

E13(x) = (E12(1), E23(x))
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for all x ∈ Z. This implies ν(E13(x)) ≤ 2ν(E12(1)) for a conjugation invariant norm

ν on SLn(Z). Second, each element A of SLn(Z) can be written as a product of con-

jugates of matrices of the form E13(x) for x ∈ Z with a number of factors K indepen-

dent of A according to a result by Carter and Keller [10]. These two facts, then imply

ν(SLn(Z)) ≤ 2Kν(E12(1)) and hence boundedness of SLn(Z). Later, it was observed by

Gal, Kedra and myself in [19] that this idea generalizes immediately to other higher rank

S-arithmetic Chevalley groups and �nite index subgroups of them. The example of SLn(Z)

also indicates the connection to bounded generation by root elements, when studying the

norms ‖ · ‖S on Chevalley groups.

But even knowing that SLn(Z) is bounded for n ≥ 3, it is still unclear how the

diameter ‖SLn(Z)‖S depends on the �nite set S in question. Morris [30] has shown for

any localization R of an order in a ring of algebraic integers (think a localization of Z[2i]),

that for n ≥ 3 the diameter ‖SLn(R)‖S has an upper bound only depending on the

cardinality of S, as well as the ring R and n. This fascinating paper really highlights the

connection to bounded generation result and I speak extensively about it in Chapter 6.

However, it still does not describe the asymptotic of ‖SLn(R)‖S in |S|. This question was

answered by Kedra, Libman and Martin at least in the special case of rings of S-algebraic

integers with class number 1. Class number 1 merely means that the ring is a principal

ideal domain, but rings of S-algebraic integers are de�ned as follows:

De�nition 1.1.6. [32, Chapter I, �11] Let K be a �nite �eld extension of Q. Then let T

be a �nite subset of the set V of all valuations of K such that T contains all archimedean

valuations. Then the ring OT is de�ned as

OT := {a ∈ K| ∀v ∈ V − T : v(a) ≥ 0}

and OT is called the ring of T -algebraic integers in K and rings OT of this form are called

rings of S-algebraic integers.

The answer given by K¦dra, Libman and Martin is:

Corollary 1.1.7. [24, Corollary 6.2] Let R be a ring of S-algebraic integers with class

number 1 and let n ≥ 3 be given. Then SLn(R) is normally generated by the single element

E1,n(1) and

1. for all �nite, normally generating subsets S of G, it holds

‖SLn(R)‖S ≤ (4n+ 51)(4n+ 4)|S|.

2. for each k ∈ N there is a �nite normal generating set Sk of SLn(R) with |Sk| = k

and ‖SLn(R)‖Sk ≥ k.
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This �nally leads to the very questions, I set out to answer in this thesis: First, can the

explicit bounds on the asymptotic of ‖SLn(R)‖S also be shown for more general rings of

S-algebraic integers R that are not principal ideal domains? And second, do these results

hold for more general simply-connected Chevalley groups G(Φ, R) besides SLn for n ≥ 3?

The groups G(Φ, R) are de�ned in Section 2.1, but for the sake of this introduction, one

should think of classical matrix groups like SLn, Sp2n de�ned by way of an irreducible root

system Φ.

1.2 Main results and methods

I give positive answers to both of these questions and my main result is the following:

Theorem 1.2.1. Let Φ be an irreducible root system of rank at least 2 and let R be

a commutative ring with 1. Additionally, let G(Φ, R) be boundedly generated by root

elements and if Φ = C2 or G2, then further assume (R : 2R) < ∞. Then there is a

constant C(Φ, R) ∈ N such that for all �nite, normally generating subsets S of G, it holds

‖G(Φ, R)‖S ≤ C(Φ, R)|S|.

Remark 1.2.2. Root elements are natural generalizations of the elementary matrices Eij(x)

in SLn. Such root elements are usually denoted by εφ(x) with varying φ ∈ Φ and x ∈ R.
Most notably

εφ(x1 + x2) = εφ(x1)εφ(x2)

holds for all x1, x2 ∈ R. I de�ne them and bounded generation by root elements in

Section 2.2.

The assumptions in Theorem 1.2.1 are quite general so the theorem can in principle

be applied to a lot of di�erent rings. The two main examples, I talk about in this

thesis are rings of S-algebraic integers and semi-local rings. First regarding rings of S-

algebraic integers, I show in Chapter 6, that the following generalization of the �rst part

in Corollary 1.1.7 holds:

Theorem 6.1.4. Let R be a ring of S-algebraic integers in a number �eld and Φ an

irreducible root system of rank at least 2. Then there is a constant C(Φ, R) ≥ 1 such

that for each �nite, normal generating set S of G(Φ, R) the inequality ‖G(Φ, R)‖S ≤
C(Φ, R)|S| holds.

Second, I state some results about boundedness of G(Φ, R) for R a semi-local ring:

Theorem 5.2.4. Let R be a commutative, semilocal ring with 1 and let Φ an irreducible

root system of rank at least 2. Furthermore, assume that (R : 2R) <∞, if Φ = C2 or G2.
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Then there is a constant K(Φ, R) such that for each �nite, normal generating set S, the

inequality G‖(Φ, R)‖S ≤ K(Φ, R) holds.

Theorem 5.2.4 is essentially a corollary of Theorem 1.2.1 and the fact that for R a

semi-local ring G(Φ, R) is boundedly generated by root elements.

The proofs of Theorem 1.2.1 and Corollary 1.1.7 are similar, so let us describe them

brie�y in the case of Φ 6= C2 or G2: First, one obtains arbitrary root elements εφ(x)

as products of conjugates of the �nite normally generating set S with the number of

factors proportional to |S|. Then secondly, one uses bounded generation of the group

by root elements, as shown by Tavgen [42] and Carter, Keller [10], to �nish the proof.

The di�erence of the two strategies lies in how one accomplishes the �rst step. To prove

Corollary 1.1.7, Kedra, Libman and Martin use extensive matrix calculations and rely

heavily on the underlying ring being a principal ideal domain to construct root elements

(or elementary matrices) in this case. Rather then using such explicit calculations, my

strategy to show the �rst step considers for an element A of S the normal subgroup of

G(Φ, R) generated by A. But the structure of such normal subgroups are well-understood

for general commutative rings. For example, there is the following general theorem by

Abe:

Theorem 3.3.1. [2, Theorem 1,2,3,4] Let Φ be an irreducible root system that is not

A1, C2 or G2 and let R be a commutative ring with 1. Then for each subgroup H ⊂ G(Φ, R)

normalized by the group E(Φ, R), there is an ideal J ⊂ R and an additive subgroup of L

of J such that Ē(J, L) ⊂ H ⊂ E∗(J, L).

Remark 1.2.3. I de�ne the subgroups E(Φ, R), Ē(J, L) and E∗(J, L) in Section 2.2, but

crucially Ē(J, L) contain many root elements as long J is not trivial.

Thus considering H as the normal subgroup generated by A, certain root elements are

contained in Ē(J, L). Hence one can describe an inconsistent theory in �rst order logic

that describes that these root elements cannot be written as a product of conjugates of

A or A−1 with any �nite number u of factors. But then Gödel's Compactness Theorem

[37, Theorem 3.2] implies that already a �nite sub-theory is inconsistent. This in turn

implies the possibility of writing these root elements as products with a certain bounded

number of conjugates of A or A−1 as factors with the bound on the number of factors

independent of the actual A ∈ G(Φ, R) in question. Then combining the various root

elements obtained for varying A ∈ S, one can �nish the proof of the �rst step.

This at least is the strategy for Φ 6= C2 or G2. If Φ is either of those, then the �rst step,

using results di�erent from Theorem 3.3.1 instead, does not quite yield all root elements.

Instead, it yields that the set

QC2 := {Aεφ(2x)A−1|φ ∈ C2, x ∈ R,A ∈ Sp4(R)}

11



in case of Φ = C2 and

QG2 :={Aεφ(2x)A−1|φ ∈ G2 short, x ∈ R,A ∈ G2(R)}

∪ {Aεφ(x)A−1|φ ∈ G2 long, x ∈ R,A ∈ G2(R)}

in case of Φ = G2 are bounded with respect to ‖ · ‖S with a bound proportional to

|S|. Then I use the remaining assumption of (R : 2R) being �nite to �nish the proof

of Theorem 1.2.1 in this case. In any case, I want to emphasize the di�erence between

Sp4(R), G2(R) and all other cases, because it will appear again and again in this thesis.

Ultimately, what this proof strategy shows is that rather than Corollary 1.1.7 and

Theorem 1.2.1 being results about geometric group theory as initially suspected, they are

much more directly connected to classical algebraic K-theory. A natural interpretation of

Theorem 1.2.1 is to consider it as a quantitative version of results about normal subgroups

in Chevalley groups.

Regarding the question of explicit upper bounds on ‖G(Φ, R)‖S however as they are

stated in Corollary 1.1.7, I want to note that my argument to prove Theorem 1.2.1 cannot

yield them. The reason for this is that the proof is non-constructive and does not provide

an explicit algorithm to construct root elements instead merely showing that it is possible

to do so. Instead, I give two di�erent methods to calculate upper bounds explicitly. Both

methods, the �rst quite similar to the matrix calculations done to prove Corollary 1.1.7

and the other dependent on a variant of the Bruhat decomposition [41, Chapter 8, p. 68,

Corollary 1], rely on the ring R being a principal ideal domain. This is due to the fact that

both require at di�erent places, the possibility to represent the greatest common divisor

of two elements of R as a principal ideal. In any case, I prove for example the following

explicit result using matrix calculations:

Corollary 6.1.6. Let R be a ring of S-algebraic integers with class number one and n ≥ 3.

Further set

∆(R) :=

 135, if R is a quadratic imaginary ring of integers or Z

12, if R is neither of the above

Then ‖Sp2n(R)‖S ≤ 192(1 + 5n)(12n+ ∆(R))|S| holds for each �nite, normal generating

S of Sp2n(R).

There are three remarks, I want to make regarding this result: First, the proof uses

R being of stable range at most 2: Namely, I use that according to Proposition 5.1.4,

the decomposition Sp2n(R) = (U+(Cn, R)U−(Cn, R))2Sp2n(R) holds for R a ring of stable

range at most 2 to improve the asymptotic of bounded generation by root elements from

the usual one that is quadratic in n appearing for example in Tavgens paper [42] to one

that is under conjugation linear in n. Second, if one were interested in providing explicit
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results for more general rings of S-algebraic integers and not just principal ideal domains,

than the clearest strategy would be to use these stable range conditions for R by adapting

the proof of Bass result [5, Theorem 4.2(e)] about normal subgroups of SLn(R).

Third, as indicated by the decomposition Sp2n(R) = (U+(Cn, R)U−(Cn, R))2Sp2n(R)

and the previous remarks on the proof of Theorem 1.2.1, one would expect a di�erence

between the cases n = 2 and n ≥ 3 for Sp2n(R).

In fact, the situation for n = 2 is more subtle and depends on number theoretic

properties of the ring R in question, more precisely on the way the ideal 2R factors

into prime ideals in R. In Chapter 6, I provide upper bounds on ‖Sp4(R)‖S for rings of

algebraic integers R with the property that each element of R can be written as a sum

of an element of 2R and a unit by imitating the proof of the Bruhat-decomposition for

�elds in Steinberg's lecture notes [41]. For example, I show the following statement:

Proposition 6.2.13. 1. Let S be a �nite, normal generating set of Sp4(Z). Then

‖Sp4(Z)‖S ≤ 5 + 248064|S|.

2. Let S be a �nite, normal generating set of Sp4(Z[1+
√
−3

2
]). Then

‖Sp4

(
Z
[

1 +
√
−3

2

])
‖S ≤ 4 + 248064|S|.

Using the principal ideal domain version of the Bruhat decomposition [41, Chapter 8,

p. 68, Corollary 1] mentioned before, I also prove the following two results:

Proposition 6.3.6. 1. Let S be a �nite normal generating set of G2(Z). Then

‖G2(Z)‖S ≤ 82098906624|S|+ 1.

2. Let S be a �nite normal generating set of G2(Z[1+
√
−3

2
]). Then

‖G2

(
Z
[

1 +
√
−3

2

])
‖S ≤ 61510897152|S|.

As mentioned, there is also an auxiliary step involved in proving Theorem 1.2.1 for

G2(R), but this additional step is actually easier and less dependent on number theoretic

properties for G2(R) than for Sp4(R). This is the case, because in some sense the set QG2

is much larger than QC2 .

I also prove the following quantitative result for E6(R) :

Theorem 6.1.7. Let R be a ring of S-algebraic integers with class number one. Further

set

∆(R) :=

 154, if R is a quadratic imaginary ring of integers or Z

117, if R is neither of the above

13



Then ∆k(E6(R)) ≤ 120 · 60211
∆(R)k holds for all k ∈ N.

Comparing the bounds obtained from the decomposition [41, Chapter 8, p. 68, Corol-

lary 1], like Theorem 6.1.7 and the ones in Corollary 1.1.7 or Corollary 6.1.6, one imme-

diately notes that Theorem 6.1.7 is worse by several orders of magnitude. However, using

the Bruhat decomposition [41, Chapter 8, p. 68, Corollary 1] has the advantage of being

independent of any representation of the underlying groups, which makes them easier to

work with for exceptional root systems Φ like E6 and G2.

But Corollary 1.1.7 does not only provide an upper bound on ‖SLn(R)‖S, it also states
the existence of normal generating sets Sk of any given cardinality k ∈ N with diameter of

‖·‖Sk being at least k. In Chapter 7, I prove the following generalization of this statement:

Theorem 7.1.5. Let R a Dedekind domain with �nite class number and at least k distinct

maximal ideals be given. Further let Φ be one of the following root systems:

1. An for n ≥ 2,

2. Bn for n ≥ 3,

3. Cn for n ≥ 3,

4. Dn for n ≥ 4,

5. E6, E7, E8 or F4

such that G(Φ, R) is boundedly generated by root elements. Then there is a normal gen-

erating set Sk of G(Φ, R) with |Sk| = k and

1. ‖G(An, R)‖Sk ≥ k(n+ 1) for n ≥ 2,

2. ‖G(Bn, R)‖Sk ≥ k(n+ 1) for n ≥ 3,

3. ‖G(Cn, R)‖Sk ≥ 2nk for n ≥ 3,

4. ‖G(Dn, R)‖Sk ≥ kn for n ≥ 4,

5. ‖G(Φ, R)‖Sk ≥ 2k for Φ = E6, E7, E8, F4.

Notably, instead of just providing an asymptotic in k, these lower bounds also provide

an asymptotic proportional to the rank of the root system. The way, these lower bounds

are shown, not only here but also in Corollary 1.1.7 is by constructing root elements

{εφ(ri)|i = 1, . . . , k} = Sk whose arguments r1, . . . , rk ∈ R have a large set of common

prime divisors T . Then one reduces modulo these prime divisors and considers the induced

conjugation generated word norm on
∏
P∈T G(Φ, R/P).
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In the proof of Corollary 1.1.7 it was then observed that the induced conjugation

generated word norms on the factors of
∏
P∈T G(Φ, R/P) are not trivial. I on the other

hand count the dimension of the 1-eigenspaces of the matrices induced on the the factors∏
P∈T G(Φ, R/P) by Sk to obtain the lower bound proportional to the rank of the root

system.

The situation for Sp4(R) and G2(R) is again more complex. Instead of there being nor-

mal generating set of each size, the situation is restricted by number theoretic properties

of R. Namely, I show the following:

Theorem 7.2.1. Let Φ be C2 or G2 and let R be a ring of S-algebraic integers in a

number �eld. Further de�ne

r := r(R) := |{P| P divides 2R and R/P = F2}|.

1. Then for all k ∈ N with k ≥ r(R), there is a normal generating set Sk of G(Φ, R)

such that ‖Sp4(R)‖Sk ≥ 4k + r(R) and ‖G2(R)‖Sk ≥ 2k holds.

2. Then there is no normal generating set of G(Φ, R) with less than r(R) elements

Showing that there are no normal generating sets of, say Sp4(R), with less than

r(R) elements is straight forward. It amounts to proving that there is an epimorphism

Sp4(R) → Fr(R)
2 and so any normal generating set of Sp4(R) with less than r(R) ele-

ments would give rise to a generating set of Fr(R)
2 with less than r(R) elements. But such

generating sets clearly cannot exist. For example, there is the following corollary:

Corollary 7.2.9. Let D be a square-free integer and R the ring of algebraic integers in

Q[
√
D] and let G := Sp4(R) or G2(R) be given.

1. If D ≡ 2, 3, 5, 6, 7 mod 8, then G can be generated by a single conjugacy class.

2. If D ≡ 1 mod 8, then G cannot be generated by a single conjugacy class, but there

are two conjugacy classes C1, C2 in G generating G.

Somewhat surprising to me is the �rst claim of Theorem 7.2.1, that the size of r(R)

is the sole obstruction to the existence of normal generating sets in Sp4(R) and G2(R).

The proof of this is slightly involved. Namely, I analyze the additive subgroup generated

by units in the ring R/2R and conclude that the prime factors of 2R with residue �eld

bigger than F2 do not matter when constructing normal generating sets.

Last, I want to talk about possible generalizations of the main results and some obvious

problems raised by the results. For example, both Theorem 1.2.1 and Theorem 5.2.4

contain the assumption that (R : 2R) is �nite if Φ = C2 or G2. While this is not a

problem for the main application of rings of S-algebraic integers, it raises the question,
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how the situation looks for, say rings of S-algebraic integers in global �elds of characteristic

2 and whether the assumption is really necessary. In this context, I prove the following

result indicating that the assumption of (R : 2R) being �nite is not necessary in all cases:

Theorem 5.3.2. Let F be a �nite �eld, P a prime ideal in F[T ] and R the localization

of F[T ] at P. Then there is a constant K(R) such that for each �nite normal generating

set S of Sp4(R), the inequality ‖Sp4(R)‖S ≤ K(R) holds.

The proof is slightly di�erent than the one of say Theorem 5.2.4 and uses the as-

sumption char(R) = 2 extensively. Ultimately though, the proof of Theorem 5.3.2 shows

that even if in the case that the ring R in question has char(R) = 2, one still obtains

strong boundedness for Sp4(R) under the sole assumption of bounded generation by root

elements for Sp4(R).

Also there is the question whether Theorem 6.1.4 can be generalized to other arithmetic

lattices. While I do not give a general statement about this, I do show the following

theorem indicating that this might very well be the case:

Theorem 8.1.1. Let R be a ring of S-algebraic integers and let H be a subgroup of �nite

index in SLn(R) for n ≥ 3. Then there is a constant C(H) ∈ N such that for each �nite,

normal generating set S of H, the inequality ‖H‖S ≤ C(H)|S| holds.

The proof is quite similar to the proof of Theorem 1.2.1 in the case of Sp4(R) or G2(R).

1.3 Structure of the thesis

As a document, the thesis is structured as follows: In Chapter 2, I de�ne all needed

notions like split Chevalley groups, their congruence subgroups and root elements, level

ideals and the word norms.

In Chapter 3, I give a more precise formulation of Theorem 1.2.1 and prove it for

general split Chevalley groups of higher rank using model theory and Gödel's Compactness

Theorem. I also lay the ground work to talk about explicit bounds on the diameters

‖G(Φ, R)‖S by de�ning the main constants L(Φ), Q(Φ, R) and in case of Φ = C2 or

G2 additionally the constants K(Φ, R) and ∆∞(G(Φ, R)/NΦ) needed to provide explicit

upper bounds.

In Chapter 4, I present two di�erent methods to obtain an upper bound on L(Φ) in

case that R is a principal ideal domain. The �rst method is by way of matrix calculations

and is shown for the example Sp2n(R) for n ≥ 3 and Sp4(R). The second method uses

a version of the Bruhat decomposition in G(Φ, R) for R a principal ideal domain and is

shown for the examples G2(R) and E6(R).
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In Chapter 5, I talk about stable range conditions for commutative rings, how they can

be used to obtain decompositions for Chevalley groups and to give a �rst step to obtain

bounds on Q(Φ, R) in certain cases. Further, this chapter treats the case of semi-local

rings and talks about boundedness properties in positive characteristic to an extent.

Chapter 6 talks about bounded generation results for rings of S-algebraic integers and

uses them to prove Theorem 6.1.4 and to provide explicit upper bounds on ‖Sp2n(R)‖S
for n ≥ 3 by using the discussion of the previous two chapters. Furthermore, Chapter 6

provides upper bounds for K(C2, R) and K(G2, R) as well as for ∆∞(G(C2, R)/NC2) and

∆∞(G(G2, R)/NG2) to provide upper bounds on ‖Sp4(R)‖S and ‖G2(R)‖S in special cases

of rings of S-algebraic integers, called 2R-pseudo-good rings. For example, this chapter

contains my proofs of Proposition 6.2.13 and Proposition 6.3.6. Lastly, I talk in this

chapter about Morris' paper [30] and his results to some extent.

In Chapter 7, I explain how to construct the normal generating sets required to prove

Theorem 7.1.5 and Theorem 7.2.1.

In Chapter 8, I prove Theorem 8.1.1 and talk about possible issues and ideas to

generalize my results.

In Appendix A, I have for the convenience of the reader collected various statements

and de�nitions regarding root systems used throughout the thesis. Appendix B describes

the exceptional isomorphism of Sp4(F2) and S6 and Appendix C contains proofs of results

in the thesis that for various reasons did not �t into the thesis proper.
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Chapter 2

De�nitions and basic properties

This chapter is divided into three sections. In the �rst section, we de�ne the split Cheval-

ley groups studied in this thesis. In the second section, we de�ne special element of split

Chevalley groups, called root elements and describe some of their properties. In the third

section, we de�ne the level ideals of elements of split Chevalley groups and explain their

connection to central elements.

But �rst, we introduce the notions of boundedness and conjugation invariant word

norms we study in this thesis anew:

De�nition 2.0.1. Let G be a group.

1. The notation A ∼ B for A,B ∈ G denotes that A,B are conjugate in G. Further-

more, we de�ne AB := BAB−1 for A,B ∈ G.

2. For S ⊂ G, we de�ne 〈〈S〉〉 as the smallest normal subgroup of G containing S.

3. A subset S ⊂ G is called a normally generating set of G, if 〈〈S〉〉 = G.

4. The group G is called �nitely normally generated, if a �nite normally generating set

S exists.

5. For k ∈ N and S ⊂ G de�ne the following set

BS(k) :=
⋃

1≤i≤k

{x1 · · ·xi|∀j ∈ {1, . . . , i} : xj or x
−1
j are conjugate to elements of S}∪{1}.

Further set BS(0) := {1}. If S only contains the single element A, then we write

BA(k) instead of B{A}(k).

6. De�ne for a set S ⊂ G the conjugation invariant word norm ‖ ·‖S : G→ N0∪{+∞}
by

‖A‖S := min{k ∈ N0|A ∈ BS(k)}
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for A ∈ 〈〈S〉〉 and by ‖A‖S := +∞ for A /∈ 〈〈S〉〉. The diameter ‖G‖S = diam(‖·‖S)

of G is de�ned as the minimal N ∈ N, such that ‖A‖S ≤ N for all A ∈ G holds, or

as +∞ if there is no such N .

7. De�ne for k ∈ N the invariant

∆k(G) := sup{diam(‖ · ‖S)| S ⊂ G with |S| ≤ k, 〈〈S〉〉 = G} ∈ N0 ∪ {∞}

with ∆k(G) de�ned as −∞, if there is no normally generating set S ⊂ G with

|S| ≤ k.

8. De�ne the invariant

∆∞(G) := sup{diam(‖ · ‖S)| S ⊂ G �nite with 〈〈S〉〉 = G} ∈ N0 ∪ {∞}

with ∆∞(G) de�ned as −∞, if there is no �nite, normally generating set S ⊂ G.

9. The group G is called strongly bounded, if ∆k(G) is �nite for all k ∈ N. It is called
uniformly bounded, if ∆∞(G) is �nite.

Remark 2.0.2. Note ∆k(G) ≤ ∆k+1(G) ≤ ∆∞(G) holds for all k ∈ N.

We will also use the following lemma throughout the thesis, usually without explicit

reference:

Lemma 2.0.3. Let G be a group and let a, b, x ∈ G be given. Then

1. (ab, x) = (b, x)a · (a, x) and

2. (ab, x) ∼ (b, x) · (x, a−1)

hold.

Proof. Observe that

(ab, x) = abx(ab)−1x−1 = a
(
bxb−1

)
· a−1x−1 = a

(
bxb−1x−1

)
·
(
xa−1x−1

)
= a(b, x)a−1 ·

(
axa−1x−1

)
= (b, x)a · (a, x).

This yields the �rst claim. But (b, x)a · (a, x) is conjugate to

(b, x) · a−1(a, x)a = (b, x)a−1axa−1x−1a = (b, x) ·
(
x, a−1

)
and this yields the second claim.
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2.1 Simply connected split Chevalley groups

To de�ne split Chevalley groups, we will �rst de�ne the Chevalley-Demazure group

scheme. We do not prove various statements in the course of this de�nition. For a

more complete description please consider [11] and [41, Theorem 1, Chapter 1, p.7; Theo-

rem 6(e), Chapter 5, p.38; Lemma 27, Chapter 3, p. 29]. Also, we use various claims about

root systems and Weyl group and have collected some of these statements in Appendix A

for the convenience of the reader.

Let G be a simply-connected, semi-simple complex Lie group and T a maximal torus in

G with associated irreducible root system Φ. Further, denote by Π a system of positive,

simple roots of Φ, by g the corresponding complex semi-simple Lie-algebra of G. The

Cartan-subalgebra corresponding to T will be denoted by h and the corresponding root

spaces in g by gφ for φ ∈ Φ. These choices of Cartan-subalgebra and (simple, positive)

roots will be �xed throughout the thesis. In particular, it will always be clear which roots

in Φ are called positive and simple. We will usually denote the positive roots in Φ by Φ+

and the negative ones by Φ−. The Lie-algebra g has a so-called Chevalley basis

{Xφ ∈ gφ}{φ∈Φ} ∪ {Hα ∈ h}{α∈Π}

such that for all φ, ψ ∈ Φ and α ∈ Π the following conditions hold:

(a) [Hα, Xφ] = φ(Hα)Xφ and φ(Hα) ∈ Z

(b) [Xφ, X−φ] ∈
⊕
α∈Π

ZHα,

(c) [Xφ, Xψ] = ±(r + 1)Xφ+ψ, if φ+ ψ ∈ Φ and r := max{i ∈ N0|φ− iψ ∈ Φ}

(d) [Xφ, Xψ] = 0, if φ+ ψ 6= 0 and φ+ ψ /∈ Φ

Chevalley-basis are unique up to signs and automorphisms of g. Furthermore, one sets

〈λ, α〉 := λ(Hα) for any linear map λ : h→ C and α ∈ Π.

For each faithful, smooth representation ρ : G → GL(V ) for a complex vector space

V , there is a lattice VZ in V with the property:

dρ(Xφ)k

k!
(VZ) ⊂ VZ for all φ ∈ Φ and k ≥ 0.

Fixing a minimal generating set {v1, . . . , vn} of VZ, then de�nes functions tij : G→ C
for all 1 ≤ i, j ≤ n by:

ρ(g)(vj) =
n∑
i=1

tij(g)vi,
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because the set {v1, . . . , vn} also de�nes a C-basis of V. The functions tij generate a Z-Hopf
algebra called Z[G] by way of the multiplication in G and Z[G] de�nes the Chevalley-

Demazure group scheme by

G(Φ, ·) : R 7→ G(Φ, R) := HomZ(Z[G], R)

with the group structure on G(Φ, R) given by the Hopf-algebra structure on Z[G]. For a

ring homomorphism R→ S, the corresponding group homomorphism

G(Φ, R) = HomZ(Z[G], R)→ HomZ(Z[G], S) = G(Φ, S)

is obtained by postcomposing with the ring homomorphism R → S. The group scheme

G(Φ, ·) does not depend up to isomorphism on the choices of Chevalley basis, faithful

representation ρ and lattice VZ.

Further note, that the ring Z[yij] is a �nitely generated Z-algebra and Z is noetherian.

Hence the polynomial ring in several unknown Z[yij] is noetherian and hence there is a

�nite collection of polynomial functions P ⊂ Z[yij] such that Z[yij]/(P ) ∼= Z[G] with the

isomorphism given by yij 7→ tij and the Hopf-algebra structure on Z[yij]/(P ) given by

yi,j + (P ) 7→ (
n∑
k=1

yik ⊗ ykj) + (P ).

Using this, one can equivalently de�ne G(Φ, R) as a subgroup of GLn(R) by setting:

G(Φ, R) := {A ∈ Rn×n|∀p ∈ P : p(A) = 0}.

In this notation, for another ring S with a ring homomorphism R→ S, the induced maps

G(Φ, R) → G(Φ, S) are obtained by entry-wise application of the ring homomorphism

R→ S. We will use mostly this interpretation of G(Φ, R) in the course of this thesis and

also we will use the notation P (A) = 0 to denote that p(A) = 0 holds for all p ∈ P .

Remark 2.1.1. In terms of algebraic groups, the group G(Φ, R) is the group of R-points

of the Z-de�ned group scheme G(Φ, ·).

2.2 Root elements

Next, we will de�ne the root elements of Chevalley groups. Again, we do not give all

details. Fix a root φ ∈ Φ and observe that for Z ∈ C arbitrary the following function is
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an element of ρ(G) ⊂ GL(V ) :

εφ(Z) :=
∞∑
k=0

(Zdρ(Xφ))k

k!

Further ρ(εφ(Z)) in GL(V ) has coordinates with respect to the basis {v1, . . . , vn} that are
polynomial functions in Z with coe�cients in Z. This yields a ring homomorphism

εφ : Z[G]→ Z[Z].

By precomposing, this de�nes another map as follows:

εφ : HomZ(Z[Z], R)→ HomZ(Z[G], R) = G(Φ, R)

Lastly, the root elements εφ(x) ∈ G(Φ, R) for x ∈ R are de�ned as the image of the map

x : Z[Z] → R,Z 7→ x under the map εφ. The element x ∈ R in question is often refered

to as the argument of εφ(x). We also denote the subgroup

〈εφ(x)| x ∈ R〉

of G(Φ, R) by εφ or εφ(R). We refer the reader to [41] for further details regarding root

elements.

Also note the following property:

De�nition 2.2.1. Let R be a commutative ring with 1. Then G(Φ, R) is boundedly

generated by root elements, if there is a natural number N := N(Φ, R) ∈ N and roots

φ1, . . . , φN ∈ Φ such that for all A ∈ G(Φ, R), there are a1, . . . , aN ∈ R (depending on A)

such that:

A =
N∏
i=1

εφi(ai).

Further, we de�ne the following two word norms:

De�nition 2.2.2. Let R be a commutative ring with 1 and Φ an irreducible root system

such that G(Φ, R) is generated by root elements. Then de�ne the two sets

EL := {εφ(t)| t ∈ R, φ ∈ Φ} and ELQ := {Aεφ(t)A−1| t ∈ R, φ ∈ Φ, A ∈ G(Φ, R)}.

Then

1. de�ne the word norm ‖ · ‖EL : G(Φ, R)→ N0 as ‖1‖EL := 0 and as

‖X‖ELQ := min{n ∈ N|∃A1, . . . , An ∈ EL : X = A1 · · ·An}

22



for X 6= 1.

2. de�ne the word norm ‖ · ‖ELQ : G(Φ, R)→ N0 as ‖1‖ELQ := 0 and as

‖X‖ELQ := min{n ∈ N|∃A1, . . . , An ∈ ELQ : X = A1 · · ·An}

for X 6= 1.

Remark 2.2.3. IfG(Φ, R) is boundedly generated by root elements than both the diameters

‖G(Φ, R)‖EL and ‖G(Φ, R)‖ELQ are always �nite, because

‖G(Φ, R)‖ELQ ≤ ‖G(Φ, R)‖EL ≤ N(Φ, R)

holds. However, ‖G(Φ, R)‖ELQ might be smaller than ‖G(Φ, R)‖EL.

The group elements εφ(t) are additive in t ∈ R, that is εφ(t + s) = εφ(t)εφ(s) holds

for all t, s ∈ R. Further, a couple of commutator formulas, expressed in the next lemma,

hold. We will use the additivity and the commutator formulas implicitly throughout the

thesis usually without reference.

Lemma 2.2.4. [21, Proposition 33.2-33.5] Let R be a commutative ring with 1 and let Φ

be an irreducible root system of rank at least 2. Let α, β ∈ Φ be roots with α + β 6= 0 and

let a, b ∈ R be given.

1. If α + β /∈ Φ, then (εα(a), εβ(b)) = 1.

2. If α, β are positive, simple roots in a root subsystem of Φ isomorphic to A2, then

(εβ(b), εα(a)) = εα+β(±ab).

3. If α, β are positive, simple roots in a root subsystem of Φ isomorphic to C2 with α

short and β long, then

(εα+β(b), εα(a)) = ε2α+β(±2ab) and

(εβ(b), εα(a)) = εα+β(±ab)ε2α+β(±a2b).

4. If α, β are positive, simple roots in a root system Φ isomorphic to G2 with α short

and β long, then

(εβ(b), εα(a)) = εα+β(±ab)ε2α+β(±a2b)ε3α+β(±a3b)ε3α+2β(±a3b2),

(εα+β(b), εα(a)) = ε2α+β(±2ab)ε3α+β(±3a2b)ε3α+2β(±3ab2),

(ε2α+β(b), εα(a)) = ε3α+β(±3ab),

(ε3α+β(b), εβ(a)) = ε3α+β(±ab) and

(ε2α+β(b), εα+β(a)) = ε3α+2β(±3ab).
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Remark 2.2.5. The signs before the arguments on the right hand side of the above com-

mutator formulas might vary depending on the choice of the Chevalley basis. These issues

are commonly referred to as pinning. This problem will not be resolved in this thesis, due

to the fact that our norms are invariant under taking inverses anyway.

Before continuing, we will de�ne the Weyl group elements and diagonal elements in

G(Φ, R):

De�nition 2.2.6. Let R be a commutative ring with 1 and let Φ be a root system. De�ne

for t ∈ R∗ and φ ∈ Φ the elements:

wφ(t) := εφ(t)ε−φ(−t−1)εφ(t).

We will often write wφ := wφ(1). We also de�ne hφ(t) := wφ(t)wφ(1)−1 for t ∈ R∗ and

φ ∈ Φ.

Remark 2.2.7. Let Π = {α1, . . . , αu} be a system of simple, positive roots in the root

system Φ. If w = wαi1 · · ·wαik is an element of the Weyl group W (Φ) as de�ned in

Appendix A, then there is an element w̃ ∈ G(Φ, R) de�ned by w̃ := wαi1 (1) · · ·wαik (1).

We will often denote this element w̃ of G(Φ, R) by w as well.

Using these Weyl group elements, we can obtain the following lemma:

Lemma 2.2.8. Let R be a commutative ring with 1 and Φ an irreducible root system. Let

φ, α ∈ Φ and x ∈ R be given. Then for each S ⊂ G(Φ, R), one has

‖εφ(x)‖S = ‖εwα(φ)(x)‖S.

Here the element wα(φ) is de�ned by the action of W (Φ) on Φ from Appendix A.

Proof. This is a direct consequence of [41, Chapter 3, p. 23, Lemma 20(b)].

However according to Proposition A.0.8, for Φ an irreducible root system and φ1, φ2 ∈
Φ two roots of the same length, there is an element w ∈ W (Φ) such that w(φ1) = φ2.

Hence Lemma 2.2.8 implies:

Lemma 2.2.9. Let R be a commutative ring with 1 and Φ an irreducible root system.

Further let φ1, φ2 ∈ Φ be two roots of the same length and let x ∈ R be given. Then for

each S ⊂ G(Φ, R), one has

‖εφ1(x)‖S = ‖εφ2(x)‖S.

We will use these two lemmas throughout the thesis usually without explicit reference.

In particular, Lemma 2.2.9 implies for Φ an irreducible root system, φ ∈ Φ, k ∈ N and

S ⊂ G(Φ, R), that the set

{x ∈ R| εφ(x) ∈ BS(k)}
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only depends on the length of φ and not on the particular φ in question. But as seen in

Proposition A.0.5, there are at most two root lengths in any irreducible root system Φ

and hence the following sets are well-de�ned:

De�nition 2.2.10. Let R be a commutative ring with 1 and Φ an irreducible root system

and let S ⊂ G(Φ, R) be given. Then for k ∈ N0

1. de�ne the subset εs(S, k) of R as {x ∈ R| εφ(x) ∈ BS(k)} for any short root φ ∈ Φ,

2. de�ne the subset εl(S, k) of R as {x ∈ R| εφ(x) ∈ BS(k)} of R for any long root

φ ∈ Φ,

3. for ψ ∈ Φ de�ne the subset ε(S, ψ, k) of R as {x ∈ R| εψ(x) ∈ BS(k)}.

Further if Φ is simply-laced, that is if there is only one root length, then we denote

εs(S, k) = εl(S, k) by ε(S, k).

Next, we will de�ne subgroups of G(Φ, R) and some other notions that we need later

on:

De�nition 2.2.11. Let Φ be an irreducible root system and let R be a commutative ring

with 1 in the following.

1. The elementary subgroup E(Φ, R) (or E(R) if Φ is clear from the context) is de�ned

as the subgroup of G(Φ, R) generated by the elements εφ(x) for φ ∈ Φ and x ∈ R.

2. The subgroup U+(Φ, R), called the subgroup of upper unipotent elements of G(Φ, R),

is the subgroup of G(Φ, R) generated by the root elements εφ(x) for x ∈ R and φ ∈ Φ

a positive root. Similarly, one can de�ne U−(Φ, R), the subgroup of lower unipotent

elements of G(Φ, R).

3. The upper Borel subgroup B+(Φ, R) = B+(R) = B(R) of G(Φ, R) is the subgroup

of G(Φ, R) generated by U+(Φ, R) and all elements hφ(t) for φ ∈ Φ and t ∈ R∗. The
lower Borel subgroup B−(Φ, R) = B−(R) of G(Φ, R) is the subgroup of G(Φ, R)

generated by U−(Φ, R) and all elements hφ(t) for φ ∈ Φ and t ∈ R∗.

4. For each pair (J, L), where J is an ideal in R and L an additive subgroup of J , we

de�ne the subgroup E(J, L) of G(Φ, R) as the group generated by all elements of

the form εα(x) for α ∈ Φ short, x ∈ J and εβ(y) for β ∈ Φ long, y ∈ L.

5. For each such pair (J, L), we de�ne the subgroup Ē(J, L) as the normal closure of

E(J, L) in E(R).

6. For each such pair (J, L), we de�ne the subgroup E∗(J, L) as follows:

E∗(J, L) := {A ∈ G(R,Φ)|(A,E(R)) ⊂ Ē(J, L)}.
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7. For a proper ideal J in R the map πJ : G(Φ, R) → G(Φ, R/J) is the group homo-

morphism induced by the quotient map R→ R/J.

Remark 2.2.12. If there is a natural number N := N(Φ, R) ∈ N and roots φ1, . . . , φN ∈ Φ

such that for all A ∈ E(Φ, R), there are a1, . . . , aN ∈ R (depending on A) such that

A =
∏N

i=1 εφi(ai), then we call the group E(Φ, R) boundedly generated by root elements.

Another technical result that we use quite often in later chapters is:

Proposition 2.2.13. [41, Chapter 3, p. 21, Lemma 16,17; Chapter 8, p. 68, Lemma 49]

Let Φ be an irreducible root system and let S, T be two sets of roots in Φ such that the

following conditions hold:

1. ∀α, β ∈ T : (α + β ∈ Φ)⇒ (α + β ∈ T ),

2. ∀α ∈ ∀Sβ ∈ T : (α + β ∈ Φ)⇒ (α + β ∈ S),

3. ∀α ∈ T : −α /∈ T

Further, let R be a commutative ring with 1. Then

1.
∏

φ∈T εφ(R) is a subgroup of G(Φ, R).

2.
∏

φ∈S εφ(R) is a subgroup of G(Φ, R) normalized by
∏

φ∈T εφ(R) and {hφ(t)|φ ∈
Φ, t ∈ R∗}.

3. every element A of
∏

φ∈T εφ(R) can be written uniquely as
∏

φ∈T εφ(xφ) for xφ ∈ R.

4. if R is additionally a principal ideal domain andK its fraction �eld, then
∏

φ∈T εφ(R) =

G(Φ, R) ∩ (
∏

φ∈T εφ(K)).

Remark 2.2.14. 1. A subset T of a root system Φ with

∀α, β ∈ T : (α + β ∈ Φ)⇒ (α + β ∈ T )

is called closed and a subset S of a closed set T with

∀α ∈ Sβ ∈ T : (α + β ∈ Φ)⇒ (α + β ∈ S)

is called an ideal in T .

2. If the indexing set I of a product
∏

i∈I ui is ordered in some manner it is always

understood that elements ui appear further to the left in the product
∏

i∈I ui than

elements uj, if i is bigger with respect to the ordering of I than j.
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2.3 Central elements of Chevalley groups and level ide-

als

Let G be a complex, simply-connected, simple Lie-group with root system Φ which is not

C2 or G2 and Π = {α1, . . . , αu} be a system of positive, simple roots and {Hα1 , . . . , Hαu}
the associated elements of the Chevalley basis of g contained in h. For each linear function

λ : h → C with 〈λ, αi〉 ∈ Z>0 for all i = 1, . . . , u there is a unique representation

ρλ : G → Vλ with highest weight λ by [41, Chapter 2, p. 14, Theorem 2]. The so-

called fundamental weights λ1, . . . , λu are de�ned by 〈λj, αi〉 = δij for 1 ≤ i, j ≤ u.

These consequently de�ne fundamental representations ρi : G → GL(Vλi) =: GL(Vi) for

1 ≤ i ≤ u. Then de�ne V := V1 ⊕ · · · ⊕ Vu. The induced direct sum representation

ρ : G → GL(V ) is faithful. The faithfulness of this ρ can be obtained by noting that

G(Φ,C) = G and using properties of maps between di�erent Chevalley groups as described

in [41, Chapter 3, p. 29].

As mentioned in the �rst section, the Chevalley group G(Φ, R) does not depend on the

chosen faithful representation up to isomorphism. In case of Φ 6= C2 or G2, the Chevalley

group arising from the representation ρ, is what we refer to as the split Chevalley group

G(Φ, R) in general. Setting further ni := dimC(Vi) for 1 ≤ i ≤ u, note that G(Φ, R) is a

subgroup of GLn1(R)× · · · ×GLnu(R) ⊂ GLn1+n2+···+nu(R) such that there is a collection

of polynomials P ⊂ Z[yij] with

G(Φ, R) = {A ∈ GLn1+n2+···+nu(R)|P (A) = 0}.

One could also use representations of the form of ρ for Φ = C2 and G2, but due to the

representations used in the formulations of certain theorems in Chapter 3, we will use a

di�erent representation in those cases. Furthermore, we use the standard presentation as

matrix groups for G(Cn, R) = Sp2n(R) and G(An, R) = SLn(R) quite often, but mostly

in Chapter 4, Chapter 5 and Chapter 7.

Also there is the following description of central elements in G(Φ, R) with respect to

the representation ρ:

Lemma 2.3.1. Let R be a reduced, commutative ring with 1 and Φ an irreducible root sys-

tem with Φ 6= C2 or G2. Further, let A ∈ G(Φ, R) commute with the elements of E(Φ, R).

Then there are t1, . . . , tu ∈ R∗ such that A = (t1In1)⊕ · · · ⊕ (tuInu) ∈ GLn1+n2+···+nu(R).

Furthermore, elements of this form are central in G(Φ, R).

Proof. We split the proof of the �rst claim of the lemma into three parts. First, we are

going to show the statement for �elds, then for integral domains and �nally for general

reduced rings. So let K be a �eld and A = (akl) ∈ G(Φ, K) be given. For �elds, one has

G(Φ, K) = E(Φ, K) by [3, Corollary 2.4] and hence A is central in G(Φ, K). Then by [41,
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Chapter 3, p. 29, Lemma 28] there are t1, . . . , tu ∈ K − {0} such that A =
∏u

i=1 hαi(ti)

with {α1, . . . , αu} = Π the system of simple, positive roots in Φ chosen. Further [41,

Chapter 3, p. 29, Lemma 28] implies

1 =
u∏
i=1

t
〈φ,αi〉
i for all φ ∈ Φ. (2.1)

Furthermore, due to the construction of G(Φ, K), we know that G(Φ, K) is a subgroup

of GLn1(K) × · · · × GLnu(K) and according to the remark after [41, Chapter 3, p. 29,

Corollary 4] for 1 ≤ j ≤ u, the element A acts on the λj-weight component of Knj ⊂
Kn1+n2+···+nu by multiplication with

u∏
i=1

t
〈λj ,αi〉
i =

u∏
i=1

t
δij
i = tj. (2.2)

This follows from the fact that λj is de�ned as the fundamental weight corresponding to

αj, that is 〈λj, αi〉 = δij holds for all 1 ≤ i, j ≤ u. Each other weight of the action of

G(Φ, K) on Knj has the form λj −
∑
φ, where the φ are positive roots in Φ. Then (2.1)

and (2.2) imply that A acts on Knj by multiplication with tjInj . This holds for all j and

so yields the claim for �elds.

For integral domains R, we distinguish two cases:

Case 1. R is �nite.

Finite integral domains are �elds and hence we are done.

Case 2. R is in�nite.

Let α ∈ Φ be given and observe that for K the algebraic closure of the �eld of fractions

of R, we have the map

φα : Ga(K) = K → G(Φ, K), λ 7→ (A, εα(λ)).

This is a morphism of algebraic varieties and note that as A commutes with elements in

εα(R) by assumption, φα|R is equal to the identity. But R is Zariski-dense in Ga(K). So

φα|R being the identity implies that φα is constant. Hence A commutes with the entire

subgroup εα(K) in G(Φ, K). However G(Φ, K) is generated by the elements {εα(λ)|λ ∈
K,α ∈ Φ}. Hence A is central in G(Φ, K) and hence it has the form A = (t1In1)⊕ · · · ⊕
(tuInu) for t1, . . . , tu ∈ K − {0}. However, the element A is contained in the subgroup

G(Φ, R) of G(Φ, K) and thus t1, . . . , tu ∈ R holds. But A−1 = (t−1
1 In1) ⊕ · · · ⊕ (t−1

u Inu)

is also an element of G(Φ, R) and thus t−1
1 , . . . , t−1

u are also elements of R and hence the

t1, . . . , tu are units in R.
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Lastly, let R be a reduced ring. Further let P be a prime ideal in R. So πP(A) ∈
G(Φ, R/P) centralizes all elements of E(Φ, R/P) and R/P is an integral domain. Thus

we obtain

A ≡ (a11In1)⊕ · · · ⊕ (an1+···+nu−1+1,n1+···+nu−1+1Inu) mod P

for all prime ideals P . This implies

A ≡ (a11In1)⊕ · · · ⊕ (an1+···+nu−1+1,n1+···+nu−1+1Inu) mod
⋂

P prime in R

P =
√

(0).

However R is reduced and so
√

(0) = (0) holds. Thus

A = (a11In1)⊕ · · · ⊕ (an1+···+nu−1+1,n1+···+nu−1+1Inu)

holds and as in the the integral domain case, one obtains that a11, . . . , an1+···+nu−1+1 are

units in R. This �nishes the proof of the �rst claim.

For the second claim, note that elements of G(Φ, R) are block matrices in

GLn1(R)× · · · ×GLnu(R) ⊂ GLn1+···+nu(R)

and so matrices of the form A = (a11In1)⊕ · · · ⊕ (an1+···+nu−1+1,n1+···+nu−1+1Inu) are obvi-

ously centralizing G(Φ, R).

Presumably this statement holds for general rings R, but we were not able to �nd a

reference. Next, we give the de�nitions of G(C2, R) = Sp4(R) and G2(R). Both are still

instances of our general de�nition of G(Φ, R) in Section 2.1, but we will not describe the

representations and choices involved explicitly for G2.

De�nition 2.3.2. Let R be a commutative ring with 1 and let

Sp4(R) := {A ∈ R4×4|ATJA = J}

be given with

J =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0


The root system C2 has four di�erent positive roots namely, C+

2 = {α, β, α + β, 2α + β}
with α short and β long and both simple. The corresponding root elements in Sp4(R)

have (subject to the choice of maximal torus as diagonal matrices in Sp4(R)) the following
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form for t ∈ R:

εα(t) = I4 + t(e12 − e43), εα+β(t) = I4 + t(e14 + e23)

εβ(t) = I4 + te24, ε2α+β(t) = I4 + te13

and εφ(t) = (ε−φ(t))T for negative roots φ ∈ C2.

We could specify an explicit matrix description for G2 with explicit root elements

as well, but this would be rather lengthy and instead we refer to the description in the

appendix of [15]. This appendix gives G2 as a subgroup-scheme of GL8. We will not

specify which elements of G2 ⊂ GL8 correspond to root elements in particular, but note

the positive roots in the root systemG2. They areG
+
2 = {α, β, α+β, 2α+β, 3α+β, 3α+2β}

with α short and β long and both simple. Further note that the root subsystem generated

by β and 3α + β is isomorphic to the root system A2.

Next, we will de�ne various variants of level ideals:

De�nition 2.3.3. Let R be a commutative ring with 1, Φ an irreducible root system and

let A ∈ G(Φ, R) be given. The level ideal l(A) is de�ned

1. in case Φ 6= C2 or G2 as the ideal in R generated by the elements ai,j and ai,i − aj,j
for all 1 ≤ i 6= j ≤ n1 + · · · + nu such that there is a k ∈ {1, . . . , u − 1} with

n1 + · · ·nk + 1 ≤ i 6= j ≤ n1 + · · ·+ nk+1 or 1 ≤ i 6= j ≤ n1.

2. in case Φ = C2 as l(A) := (ai,j, (ai,i − aj,j)|1 ≤ i 6= j ≤ 4).

3. in case Φ = G2 as l(A) := (ai,j, (ai,i − aj,j)|1 ≤ i 6= j ≤ 8).

Furthermore, de�ne the following ideals: If Φ = C2 de�ne

l(A)2 := (a2
i,j, (ai,i − aj,j)2|1 ≤ i 6= j ≤ 4)

and if Φ = G2 de�ne

l(A)3 := (a3
i,j, (ai,i − aj,j)3|1 ≤ i 6= j ≤ 8).

Remark 2.3.4.

1. In case Φ = C2 or G2, note l(A) ⊂
√
l(A)2 or l(A) ⊂

√
l(A)3.

2. All of the ideals l(A), l(A)2 and l(A)3 are �nitely generated and independently of

the irreducible Φ in question any element A ∈ G(Φ, R) maps to a central element

in G(Φ, R/l(A)), if l(A) 6= R. This is obvious in case of Φ 6= C2 or G2 and a

consequence of Lemma 2.3.1 otherwise.
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Chapter 3

Strong boundedness of Chevalley

groups

In this chapter, we show how to obtain strong boundedness for split Chevalley groups

of higher ranks as a consequence of applying Gödel's Compactness Theorem to Sand-

wich Theorems describing normal subgroups of split Chevalley groups. Instead of proving

Theorem 1.2.1 directly, we prove two other theorems for di�erent root systems Φ, Theo-

rem 3.1.2 and Theorem 3.2.5, that together are equivalent to Theorem 1.2.1. We handle

the three cases of Φ being not C2 or G2 and Φ being either of them separately, because

the lower rank examples are more complicated then the higher rank ones. This distinction

will persist throughout this thesis.

In the �rst section, we state and prove the strong boundedness Theorem 3.1.2 for

higher rank Chevalley groups G(Φ, R) for Φ not C2 and G2. Further, we state the main

technical statement, Theorem 3.1.1, needed to prove Theorem 3.1.2. In the second section,

we state similar technical statements, Theorem 3.2.1 and Theorem 3.2.2, for Sp4(R) and

G2(R) and explain how to use them to prove the strong boundedness Theorem 3.2.5,

for them. In the third section, we prove the main technical statement, Theorem 3.1.1,

for higher rank Chevalley groups for Φ 6= C2 or G2 using Gödel's compactness theorem

and in the fourth and �fth section respectively, we prove the main technical statements,

Theorem 3.2.1 and Theorem 3.2.2, for Sp4(R) and G2(R).

The two main de�nitions used in this chapter are:

De�nition 3.0.1. Let R be a commutative ring with 1, I an ideal in R, Φ an irrducible

root system and S a subset of G(Φ, R). Then de�ne the following two subsets of maximal

ideals in R :

1. V (I) := {m maximal ideal in R|I ⊂ m} and

2. Π(S) := {m maximal ideal of R| ∀A ∈ S : πm(A) central in G(Φ, R/m)}

We also note the following observation:
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Lemma 3.0.2. Let R be a commutative ring with 1, I1, I2 two ideals in R, Φ an irreducible

root system in R and S, T two subsets of G(Φ, R). Then V (I1 + I2) = V (I1) ∩ V (I2) and

Π(S ∪ T ) = Π(S) ∩ Π(T ) holds.

The following lemma is elementary yet crucial for the later analysis:

Lemma 3.0.3. Let Φ be an irreducible root system of rank at least 2 and R a commutative

ring with 1 and G := G(Φ, R) the corresponding split Chevalley group. Further let S be a

normally generating set of G. Then Π(S) = ∅ holds.

Proof. Assume for contradiction that m is an element of Π(S) and set K := R/m.

Then the set S maps to a set of central elements S̄ in G(Φ, K). However, the set S

normally generates G(Φ, R) and so in particular, the subgroup E(Φ, R) is contained in

the normal subgroup of G(Φ, R) generated by S. But E(Φ, R) maps onto E(Φ, K) and

G(Φ, R/m) = E(Φ, R/m) holds according to [3, Corollary 2.4]. This implies in particular

that S̄ normally generates G(Φ, K). So S̄ is a subset of the center of G(Φ, K) and nor-

mally generates G(Φ, K). But this is only possible if G(Φ, K) is an abelian group to begin

with. But this is impossible, as can be seen in a number of di�erent ways: The center of

G(Φ, K) is a subset of

H := 〈hφ(t)|t ∈ K,φ ∈ Φ〉.

according to [41, Chapter 3, p. 29, Lemma 28(d)], but on the other hand H ∩U(Φ, K) =

{1} holds by [41, Chapter 3, p. 24, Lemma 21]. So G(Φ, K) being abelian and hence

H = G(Φ, K) would imply U(Φ, K) = {1}. But according to [41, Chapter 3, p. 27,

Lemma 17] for φ ∈ Φ arbitrary, the subgroup εφ(K) of U(Φ, K) = {1} is isomorphic to

(K,+). So the �eld K is trivial, which implies R = m and contradicts the assumption

that m is a maximal ideal in R.

3.1 Strong boundedness of higher rank Chevalley groups

The main technical theorem used in this section is the following:

Theorem 3.1.1. Let Φ be an irreducible root system of rank at least 2, which is not

C2 or G2 and let R be a commutative ring with 1. Then there are constants L(Φ) ∈ N
(depending only on Φ) such that for A ∈ G(Φ, R) it holds that, there is an ideal I(A)

contained in εs(A,L(Φ)) and with the property V (I(A)) ⊂ Π({A}).

The main theorem in this section is the following version of Theorem 1.2.1:

Theorem 3.1.2. Let Φ be an irreducible root system that is not C2, G2 or A1 and let R be

a commutative ring with 1 such that G(Φ, R) is boundedly generated by root elements with

‖G(Φ, R)‖ELQ ≤ Q(Φ, R). Further let L(Φ) ∈ N0 be the constant given by Theorem 3.1.1.
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1. If Φ is simply-laced, then ∆k(G(Φ, R)) ≤ Q(Φ, R)L(Φ)k holds for all k ∈ N.

2. If Φ is not simply-laced, then ∆k(G(Φ, R)) ≤ 3Q(Φ, R)L(Φ)k holds for all k ∈ N.

We show next:

Proposition 3.1.3. Let Φ be any irreducible root system that is not G2, C2 or A1, R a

commutative ring with 1 and let S be a �nite subset of G := G(Φ, R) with Π(S) = ∅ and
let L(Φ) be as in Theorem 3.1.1.

1. If Φ is simply-laced, then ‖εφ(a)‖S ≤ |S|L(Φ) holds for all a ∈ R and for φ any root

in Φ.

2. If Φ is not simply-laced, then ‖εφ(a)‖S ≤ 3|S|L(Φ) holds for all a ∈ R and for φ

any root in Φ.

Proof. Let S = {A1, . . . , An} be given and for l = 1, . . . , n, let I(Al) be the ideal from

Theorem 3.1.1. Next, consider the ideal I := I(A1)+ · · ·+I(An). As I(Al) ⊂ εs(Al, L(Φ))

holds for all l, it is immediately clear that ‖εφ(a)‖S ≤ |S|L(Φ) holds for all a ∈ I and

φ ∈ Φ short. But if I were not R, then there would be a maximal ideal m containing I.

So according to Lemma 3.0.2, the ideal m would be contained in

V (I) = V (I(A1)) ∩ · · · ∩ V (I(An)) ⊂ Π({A1}) ∩ · · · ∩ Π({An}) = Π(S) = ∅.

Hence I = R holds.

This proves the claim of the proposition for the simply-laced case and shows in the

not simply-laced case that

‖εφ(x)‖S ≤ L(Φ)|S|

holds for any x ∈ R and φ ∈ Φ short. If there are long and short roots in Φ, then each long

root is conjugate to a positive, simple long root φ in Φ and there is a short, positive, simple

root ψ such that the set {ψ, φ} spans a root subsystem of Φ isomorphic to C2. Further

according to the short root case, we know ‖εψ(a)‖S ≤ |S|L(Φ) for all a ∈ R already. But

ψ + φ is a short root as well and so we obtain ‖εψ(1)‖S, ‖εψ+φ(a)‖S ≤ |S|L(Φ) for all

a ∈ R. Hence as
(εψ(1), εφ(a)) = εψ+φ(±a)ε2ψ+φ(±a),

holds, we obtain ‖ε2ψ+φ(a)‖S ≤ 3|S|L(Φ) for all a ∈ R. The root 2ψ + φ is long however

and so we obtain the claim for Φ not simply-laced.

Having this proposition, we obtain Theorem 3.1.2:
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Proof. Let S = {A1, . . . , An} be a normal generating set of G(Φ, R). Then Π(S) = ∅ holds
according to Lemma 3.0.3. Hence according to Proposition 3.1.3, one has

‖εφ(a)‖S ≤ |S|L(Φ) if Φ is simply-laced and

‖εφ(a)‖S ≤ 3|S|L(Φ) if Φ is not simply-laced

for all a ∈ R and all φ ∈ Φ. But according to assumption G(Φ, R) is boundedly generated

by root elements with

‖G(Φ, R)‖ELQ ≤ Q(Φ, R).

This implies

‖G(Φ, R)‖S ≤ ‖ELQ‖S · ‖G(Φ, R)‖ELQ ≤ |S|L(Φ) ·Q(Φ, R)

if Φ is simply laced and

‖G(Φ, R)‖S ≤ ‖ELQ‖S · ‖G(Φ, R)‖ELQ ≤ 3|S|L(Φ) ·Q(Φ, R)

if not. This �nishes the proof.

Chapter 4 is mainly concerned with determining possible values of L(Φ) for Φ = Cn

for n ≥ 3 and Φ = E6 and Chapter 5 and Chapter 6 are concerned among other things

with determining possible values for Q(Φ, R) in case of speci�c rings.

3.2 Strong boundedness for Sp4 and G2

The two main tools in this section are the following two technical theorems:

Theorem 3.2.1. Let R be a commutative ring with 1 and let A ∈ Sp4(R) be given. Then

there is a constant L(C2) (not depending on A or R) such that, there is an ideal I(A)

(depending on A) with V (I(A)) ⊂ Π({A}) and 2I(A) ⊂ ε(A, φ, L(C2)) for all φ ∈ C2.

More precisely, 2l(A)2 ⊂ ε(A, φ, L(C2)) holds for all φ ∈ C2.

and

Theorem 3.2.2. Let R be a commutative ring with 1 and let A ∈ G2(R) be given.

Then there is a constant L(G2) (not depending on A or R) such that, there is an ideal

I(A) (depending on A) with V (I(A)) ⊂ Π({A}) and I(A) ⊂ εl(A,L(G2)). More precisely

l(A)3 ⊂ εl(A,L(G2)) holds.

We further need the following:
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Lemma 3.2.3. Let R be a commutative ring with 1, (R : 2R) < ∞ and Φ = C2 or G2

such that G := G(Φ, R) is boundedly generated by root elements. Further de�ne

QC2 := {Aεφ(2x)A−1| x ∈ R, φ ∈ C2, A ∈ Sp4(R)} and

QG2 := {Aεφ(2x)A−1| x ∈ R, φ ∈ G2 short, A ∈ G2(R)}

∪ {Aεφ(x)A−1| x ∈ R, φ ∈ G2 long, A ∈ G2(R)}

and NΦ := 〈QΦ〉 and let ‖ · ‖QΦ
: NΦ → N0 be the word norm on NΦ de�ned by the set

QΦ.

1. Then the group G/NΦ is �nite.

2. Then there is a K(Φ, R) ∈ N such that ‖NΦ‖QΦ
≤ K(Φ, R).

Proof. First, we show that NΦ has �nite index in G to show the �rst claim of the lemma.

The ideal 2R has �nite index in R so let X ⊂ R be a �nite set of representatives of 2R in

R. The group G is boundedly generated by root elements and so there is an n := n(R)

and roots α1, . . . , αn ∈ Φ such that for all A ∈ G there are r1, . . . , rn with

A =
n∏
i=1

εαi(ri). (3.1)

Next, choose for each i an element ai ∈ R and an xi ∈ X such that ri = 2ai + xi. Note:

A =
n∏
i=1

εαi(ri) = εα1(2a1)

[
n∏
i=2

εαi(2ai)
(εα1 (x1)···εαi−1 (xi−1))

]
·

[
n∏
i=1

εαi(xi)

]
(3.2)

Yet the �rst two factors at the right are elements of NΦ and there are only �nitely many

possibilities for the third factor, so the �rst claim of the lemma follows. For the second

claim, observe that (3.2) implies for A ∈ NΦ:

‖A‖QΦ
≤

n∑
i=1

‖εαi(2ai)‖QΦ
+ ‖

n∏
i=1

εαi(xi)‖QΦ
≤ n+ ‖

n∏
i=1

εαi(xi)‖QΦ
.

But again, there are only �nitely many possibilities for ‖
∏n

i=1 εαi(xi)‖QΦ
and this proves

the second claim.

Remark 3.2.4. As the group G/NΦ = G(Φ, R)/NΦ is �nite, it is uniformly bounded, that

is the constant ∆∞(G(Φ, R)/NΦ) is �nite as well.

In this section, we will prove strong boundedness for Sp4 and G2:

Theorem 3.2.5. Let R be a commutative ring with 1, (R : 2R) < ∞ and Φ = C2 or G2

such that G(Φ, R) is boundedly generated by root elements. Additionally, de�ne NΦ, QΦ
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and K(Φ, R) as in Lemma 3.2.3 and let L(C2) be the constant given in Theorem 3.2.1 and

L(G2) be the constant given in Theorem 3.2.2. Further, de�ne the constants j(C2) := 1

and j(G2) := 6. Then

∆k(G(Φ, R)) ≤ j(Φ)L(Φ)K(Φ, R)k + ∆∞(G(Φ, R)/NΦ)

holds for all k ∈ N.

3.2.1 The Sp4-case

First, we obtain the version of Proposition 3.1.3 for Sp4(R):

Proposition 3.2.6. Let R be a commutative ring with 1 and let S ⊂ Sp4(R) be a �nite

set with Π(S) = ∅. Let L(C2) be as given in Theorem 3.2.1. Then we have for all a ∈ R
and for all φ ∈ C2 that ‖εφ(2a)‖S ≤ |S|L(C2) holds.

Proof. Let S = {A1, . . . , Ak} be given and let 2I(Al) be the ideal and L(C2) the constant

from Theorem 3.2.1 for all l = 1, . . . , k. Consider the ideal I := I(A1) + · · · + I(Ak).

As 2I(Al) ⊂ ε(Al, φ, L(C2)) holds for all l and all φ ∈ C2, it is immediately clear that

‖εφ(2a)‖S ≤ |S|L(C2) holds for all a ∈ I. Thus it su�ces to show that I = R, which

follows from Π(S) = ∅ in the same manner as in the proof of Proposition 3.1.3.

We can prove Theorem 3.2.5 for Sp4(R) now:

Proof. Let S be a �nite normal generating set of Sp4(R). Set G := Sp4(R) and recall

QC2 := {Aεφ(2x)A−1| x ∈ R, φ ∈ C2, A ∈ Sp4(R)}.

and NC2 := 〈QC2〉. Next, set

E(G/NC2) := {T ⊂ G/NC2 | T normally generates G/NC2}

Let π : G → G/NC2 be the quotient map. The quotient G/NC2 is �nite according to

Lemma 3.2.3(1) and so we can de�ne M(R,C2) := M := ∆∞(G/NC2) ∈ N0. So for all

T ⊂ G �nite with π(T ) ∈ E(G/NC2):

∀g ∈ G : ∃t1, . . . , tM ∈ T ∪ T−1 ∪ {1} : ∃A1, . . . , AM ∈ G :

π(g) = π(
M∏
i=1

AitiA
−1
i ).
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Hence g(
∏M

i=1AitiA
−1
i )−1 ∈ NC2 holds and so

‖g‖S ≤ ‖
M∏
i=1

AitiA
−1
i ‖S + ‖NC2‖S ≤M max{‖t‖S| t ∈ T}+ ‖NC2‖S.

This implies

‖Sp4(R)‖S ≤M max{‖t‖S| t ∈ T}+ ‖NC2‖S

for all T ⊂ G �nite with π(T ) ∈ E(G/NC2).

Next, note that S itself is such a subset by assumption and for A ∈ S, one clearly has

‖A‖S ≤ 1 and thus

‖Sp4(R)‖S ≤M + ‖NC2‖S = M(C2, R) + ‖NC2‖S. (3.3)

But according to Lemma 3.0.3, one has Π(S) = ∅. Thus according to Proposition 3.2.6,

for all q ∈ QC2 , one has ‖q‖S ≤ L(C2)|S| for the L(C2) from Theorem 3.2.1. Further, by

Lemma 3.2.3(2), there is a K(C2, R) ∈ N such that ‖NC2‖QC2
≤ K(C2, R). This implies

‖NC2‖S ≤ K(C2, R)L(C2)|S| and this �nishes the proof together with (3.3).

3.2.2 The G2-case

Remember that the positive roots of G2 are α, β, α + β, 2α + β, 3α + β, 3α + 2β with α

short and simple and β long and simple. Further, recall that the root subsystem spanned

by β and 3α + β is isomorphic to A2. First, we give the version of Proposition 3.1.3 for

G2 :

Proposition 3.2.7. Let R be a commutative ring with 1 and let S be a �nite subset of

G2(R) with Π(S) = ∅ and let L(G2) be chosen as in Theorem 3.2.2. Then for all a ∈ R :

1. ‖εφ(a)‖S ≤ L(G2)|S| holds for all φ ∈ G2 long.

2. ‖εφ(2a)‖S ≤ 6L(G2)|S| holds for all φ ∈ G2 short.

Proof. Note that according to Theorem 3.2.2, one has I ⊂ εl(S, L(G2)|S|) for the ideal

I :=
∑

A∈S I(A). As in the proof of Proposition 3.1.3, Π(S) = ∅ implies I = R. This

yields the claim of the proposition for long roots. To get the claim for short roots, observe

�rst that εβ(a) ∈ BS(L(G2)) holds for all a ∈ R, because β is long. This implies

BS(2L(G2)) 3 (εβ(a), εα(1)) = εα+β(±a)ε2α+β(±a)ε3α+β(±a)ε3α+2β(±a2). (3.4)

However, ε3α+β(±a)ε3α+2β(±a2) commutes with εα(1) and hence we obtain from equation
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(3.4) that:

BS(4L(G2)) 3
(
εα+β(±a)ε2α+β(±a)ε3α+β(±a)ε3α+2β(±a2), εα(1)

)
= (εα+β(±a)ε2α+β(±a), εα(1))

∼ (ε2α+β(±a), εα(1)) · (εα(1), εα+β(±a))

= ε3α+β(±3a) · ε2α+β(±2a)ε3α+β(±3a)ε3α+2β(±3a2)

= ε2α+β(±2a)ε3α+β(±3a± 3a)ε3α+2β(±3a2).

Yet ε3α+β(±3a ± 3a) and ε3α+2β(±3a2) are both elements of BS(L(G2)) by assumption

and hence

ε2α+β(±2a) ∈ BS(6L(G2))

holds. But 2α + β is a short root and hence as a ∈ R is arbitrary, the claim for short

roots follows as well.

Using this one can now prove Theorem 3.2.5 for G2(R), but the proof is essentially

the same as the one for Sp4(R), so we are going to omit it.

Determining the value of ∆∞(G/NΦ) for Φ = C2 or G2 is very similar to determining

the so-called covering number of the group G/NΦ. This is a classical problem in the

theory of �nite groups and we talk about this to some extent in Chapter 6. Determining

K(Φ, R) on the other hand is more di�cult and we show how to do it for a special case

of R in Chapter 6 as well. It is a problem related to the congruence subgroup property.

Lastly note the following corollary of the previous proofs:

Corollary 3.2.8. Let R be a commutative ring with 1, Φ irreducible and of rank at least

2 and assume G(Φ, R) = E(Φ, R). Then a subset S of G normally generates G precisely

if

1. one has Π(S) = ∅ in case Φ 6= C2, G2

2. one has Π(S) = ∅ and S maps to a normally generating set of G/NΦ for NΦ as in

Lemma 3.2.3 in case Φ = C2 or G2.

Proof. First, if S normally generates G(Φ, R), then Lemma 3.0.3 implies Π(S) = ∅, so
this condition is always necessary independent of Φ. However, if Φ = C2 or G2, then it is

obvious that if S normally generates G(Φ, R), it must also normally generate its quotient

G(Φ, R)/NΦ. This proves that the conditions named in the corollary are necessary.

On the other hand, assume �rst that Φ 6= C2 or G2 and that Π(S) = ∅ holds. As

G(Φ, R) = E(Φ, R) holds by assumption, it su�ces to prove that G(Φ, R) contains all root

elements. This however is a direct consequence of Proposition 3.1.3. In case Φ = C2 or

G2, the crucial point is that Π(S) = ∅ implies NΦ ⊂ 〈〈S〉〉 as implied by Proposition 3.2.6

and Proposition 3.2.7. Hence it is obvious, that if S maps to a normally generating set

of G/NΦ for G = G2(R) or Sp4(R), then S must normally generate G.
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3.3 Boundedness of root elements in higher rank Chevalley-

groups

In this section, we prove Theorem 3.1.1. The main tool is the following theorem by Abe:

Theorem 3.3.1. [2, Theorem 1,2,3] Let Φ be an irreducible root system that is not A1, C2

or G2 and let R be a commutative ring with 1. Then for each subgroup H ⊂ G(Φ, R)

normalized by the group E(Φ, R), there is an ideal J ⊂ R and an additive subgroup L of

J such that Ē(J, L) ⊂ H ⊂ E∗(J, L).

Remark 3.3.2.

1. The paper [43] by Vaserstein deals with similar statements in the simply laced case

and with the multiple laced case under some assumptions. The papers Abe, Suzuki

[3] and Abe [1] deal with local rings.

2. The proof of Theorem 3.3.1 is quite complicated and requires a careful reduction to

the case of R being local. However, under the assumption that R satis�es a stable

range condition (see Chapter 5), results of the form of Theorem 3.3.1 are much

more readily provable. For example, Bass earlier result [5, Theorem 4.2(e)] shows a

similar description of normal subgroups of SLn(R) by using much more elementary

methods in case R satis�es a stable range condition.

3. Theorem 3.3.1 is enough to prove strong boundedness of G(Φ, R) for commutative

rings with 1 and Φ 6= A1, C2, G2 withG(Φ, R) boundedly generated by root elements.

However, this would not yield any linear bounds on ∆k and is very similar to our

argument, so we do not give more details.

We further need the following lemma about root elements:

Lemma 3.3.3. Let Φ an irreducible root system that is not A1, C2 or G2, R a commutative

ring with 1 and A ∈ G(Φ, R) be given and assume that λ ∈ εs(A,N) for some N ∈ N.
Then

λR ⊂ εs(A, 8N)

holds.

Proof. First note that λ ∈ εs(A,N) is equivalent to εφ(λ) ∈ BA(N) for any short root

φ ∈ Φ. We distinguish two cases:

1. Φ 6= Bn. Note that φ is a short root in Φ and that all of these root systems contain a

root subsystem isomorphic to A2 consisting of short roots. Hence after conjugating

with a suitable Weyl group element, we can assume that Φ = A2 with simple positive
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roots α, β and φ = α + β. But α is also short and this implies εα(λ) ∈ BA(N). For

x ∈ R arbitrary, we obtain further

εφ(±xλ) = (εα(±λ), εβ(±x)) ∈ BA(2N).

This yields the claim for Φ 6= Bn.

2. Φ = Bn for n ≥ 3. After conjugation with Weyl group elements, we assume that

n = 3 and so there are positive, simple roots α, β, φ with the Dynkin-diagram

corresponding to the simple roots α, β and φ looking as follows:

φβα

Then

BA(2N) 3 (εφ(λ), εβ(x)) = εβ+φ(±xλ)εβ+2φ(±xλ2) (3.5)

holds for x ∈ R arbitrary. The root β+φ is short however and so we have εβ+φ(λ) ∈
BA(N) as well. Thus for x = 1 we obtain εβ+2φ(λ2) ∈ BA(3N) from (3.5). The

root β + 2φ is long and hence εβ+2φ(λ2) is (up to sign) conjugate to εβ(λ2) and so

εβ(λ2) ∈ BA(3N). Yet α, β are simple roots in a root subsystem of B3 isomorphic

to A2 and hence we obtain from the �rst item that εβ(xλ2) ∈ BA(6N) holds for

all x ∈ R. Summarizing this with equation (3.5) we get εβ+φ(xλ) ∈ BA(8N) for all

x ∈ R. Hence after conjugation we are done with the case Φ = Bn as well.

Remark 3.3.4. This Lemma is a more quantitative version of Vasersteins [43, Theo-

rem 4(a)].

We can prove Theorem 3.1.1 now:

Proof. First, let n1, . . . , nu be given as the dimensions of the representations involved in

de�ning ρ as in Section 2.3 and set n := n1 + · · ·+ nu. Also choose the polynomials P in

Z[yij] characterizing elements of G(Φ, ·) that is

G(Φ, R) = {X ∈ Rn×n|P (X) = 0}

holds for any commutative ring R with 1. Further, let 1 ≤ k, l ≤ n be given with not both

k and l equal to n and let φ ∈ Φ be a short root.

Next, let a language L with the relation symbols, constants and function symbols

(R, 0, 1,+,×, (ai,j)1≤i,j≤n, (e(k, l, v))v∈N, ·−1)
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be given. Here 0, 1 are constant symbols, (ai,j)1≤i,j≤n is a matrix of constant symbols and

(e(k, l, v))v∈N is an in�nite sequence of constant symbols. Further ·−1 : Rn×n → Rn×n is

a function symbol and we often use the notation X−1 := ·−1(X) for X an n×n-matrix of

variable and constant symbols. Also the symbol A denotes the n× n-matrix of constants

(ai,j) and X commonly refers to n×n-matrices of variable symbols. Next, we de�ne a �rst

order theory Tkl in the language L. This �rst order-theory Tkl contains formulas regarding

n × n-matrices with entries being variables or constant symbols in L, but these formu-

las can always be rephrased into a conjunction of formulas about variables or constants

in L. Further, the formulas in Tkl also involve multiplication and conjugation of n × n-
matrices of constants and variables in the language L. However, matrix multiplication

can be phrased in terms of L as it is de�ned entry-wise: For example the (i, j)-entry of

Z := (zij) := X · Y is de�ned as zij :=
∑n

t=1 xitytj for 1 ≤ i, j ≤ n and X = (xij) and

Y = (yij).

The theory Tkl is de�ned to contain the following sentences:

1. Sentences forcing the universe R := RM of each modelM of Tkl to be a commutative

ring with respect to the functions +M,×M and with 0M, 1M being 0 and 1 in the

ring R.

2. For all v ∈ N: If k 6= l the sentence e(k, l, v) = avk,l should be included in Tkl. If on
the other hand k = l, then choose the smallest w ∈ {1, . . . , u} with k ≤ n1 + · · ·+nw
and include the sentence e(k, l, v) = (ak,k − an1+···+nw)v.

3. The sentence P (A) = 0.

4. The sentence ∀X : (P (X) = 0)→ (X ·X−1 = In), where In denotes the unit matrix

in Rn×n with entries the constant symbols 0, 1 as appropriate.

5. A family of sentences (θr)r∈N as follows:

θr :
∧

1≤v≤r

∀X(v)
1 , . . . , X(v)

r ,∀e(v)
1 , . . . , e(v)

r ∈ {0, 1,−1} :[(
P
(
X

(v)
1

)
= · · · = P

(
X(v)
r

)
= 0
)
→
(
εφ(e(k, l, v)) 6= (Ae

(v)
1 )X

(v)
1 · · · (Ae

(v)
r )X

(v)
r

)]
Here A1 := A,A−1 := A−1 and A0 := In. Also remember as mentioned in Sec-

tion 2.2, that εφ(T ) for T a variable, is a n×n-matrix, whose entries are polynomials

in Z[T ], so in particular the last collection of sentences (θr) are in fact �rst-order

sentences in the language L.

We �rst show that the theory Tkl is inconsistent. To this end, letM be a model for

the sentences in (1) through (4) and let R := RM be the universe of M. The sentences
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in (1) enforce that R is a commutative ring with 1 = 1M and 0 = 0M and (3) enforces

that the matrix A := (aMi,j ) ∈ Rn×n is an element of the Chevalley group G(Φ, R). Let H

be the subgroup of G(Φ, R) normally generated by A. According to Theorem 3.3.1 there

is a pair (J, L) such that

Ē(J, L) ⊂ H ⊂ E∗(J, L).

As L ⊂ J holds, A ∈ E∗(J, L) implies that πJ(A) centralizes E(R/J) and consequently

that π√J(A) centralizes E(R/
√
J). The ring R/

√
J is reduced and so π√J(A) has the form

described in Lemma 2.3.1. This implies that l(A) ⊂
√
J. Hence as Ē(J, L) ⊂ H, there

is a constant r′ ∈ N such that εφ(e(k, l, v)M) ∈ BA(r′) holds for some v ≤ r′. But this

contradicts the statement θMr′ .

So summarizing: a model of the sentences in (1) through (4) cannot be a model of all

of the sentences θr. Hence there is in fact no model of all of the above sentences and hence

Tkl is inconsistent. Gödel's Compactness Theorem [37, Theorem 3.2] implies then, that a

certain �nite subset T 0
kl ⊂ Tkl is already inconsistent. But then only a �nite collection of

the θr is contained in T 0
kl. So let Lkl(Φ) ∈ N be the largest r ∈ N with θr ∈ T 0

kl. Observe

further, that for all r ∈ N, we have {(1) − (4), θr+1} ` θr. Hence the subset T 1
kl ⊂ Tkl

that contains all sentences in (1) through (4) and the single sentence θLkl(Φ), must be

inconsistent as well.

Let R be an arbitrary commutative ring with 1 and let A ∈ G(Φ, R) be given. This

gives us a modelM of the sentences in (1) through (4) and hence as T 1
kl is inconsistent, this

model must violate the statement θMLkl(Φ). Thus there are elements g1, . . . , gLkl(Φ) ∈ G(Φ, R)

and e1, . . . , eLkl(Φ) ∈ {0, 1,−1} as well as a natural number v ≤ Lkl(Φ) such that

εφ(e(k, l, v)M) = (Ae1)g1 · · · (AeLkl(Φ))gLkl(Φ) .

Hence we obtain that either a power of akl (in case k 6= l) or a power of akk−an1+···+nw,n1+···+nw

(in case k = l) is an element of ε(A, φ, Lkl(Φ)). So setting

L(Φ) :=
∑

1≤k,l≤n not both k,l=n

8Lkl(Φ),

we get together with Lemma 3.3.3 an ideal I(A) in R such that I(A) ⊂ ε(A, φ, L(Φ))

and l(A) ⊂
√
I(A) holds. But if m is a maximal ideal containing I(A), then it contains

l(A) and so πm(A) is central in G(Φ, R/m) according to Lemma 2.3.1. Hence V (I(A)) ⊂
Π({A}) holds. So the ideal I(A) has the desired properties for the single root φ. But

ε(A, φ, L(Φ)) = εs(A,L(Φ)) holds and so the theorem is proven.
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3.4 Boundedness of root elements in Sp4(R)

In this section, we prove Theorem 3.2.1. Recall that the positive roots in C2 are α, β, α+β

and 2α+ β with α short, positive and simple and β long, positive and simple. The main

ingredient is the following observation due to Costa and Keller instead of Theorem 3.3.1:

Theorem 3.4.1. [14, Theorem 2.6, 4.2, 5.1, 5.2] Let R be a commutative ring with 1

and let A ∈ Sp4(R) be given. Then for all x ∈ l(A) one has ε2α+β(2x + x2)εα+β(x2) ∈
〈〈A〉〉E(C2,R) with 〈〈A〉〉E(C2,R) denoting the subgroup of Sp4(R) generated by the E(C2, R)-

conjugates of A.

Root elements in Sp4 are more complicated than in higher rank groups:

Lemma 3.4.2. Let R be a commutative ring with 1 and S ⊂ Sp4(R). Let λ ∈ R and

N ∈ N be given. Then

1. ε2α+β(2λ+ λ2)εα+β(λ2) ∈ BS(N) implies {ε2α+β(2xλ2)|x ∈ R} ⊂ BS(2N).

2. ε2α+β(λ) ∈ BS(N) implies εφ(λ) ∈ BS(3N) for all φ short in C2.

3. εα(xλ) ∈ BS(N) for all x ∈ R implies εφ(xλ2) ∈ BS(3N) for all φ ∈ C2 long and

all x ∈ R.

4. ε2α+β(λ) ∈ BS(N) implies {ε2α+β(2xλ)|x ∈ R} ⊂ BS(6N).

5. ε2α+β(2λ+ λ2)εα+β(λ2) ∈ BS(N) implies {εφ(2xλ2)|x ∈ R, φ ∈ C2} ⊂ BS(6N).

All of the above implications stay true, if the balls BS are replaced by a normal subgroup

of Sp4(R).

Proof. For the �rst claim inspect the commutator

ε2α+β(±2xλ2) = (εα(x), ε2α+β(2λ+ λ2)εα+β(λ2))

for x ∈ R arbitrary. For the second claim, note that ε2α+β(λ) is conjugate to εβ(λ) and

so εβ(λ) ∈ BS(N). Note further

BA(2N) 3 (εβ(λ), εα(1)) = εα+β(±λ)ε2α+β(±λ).

These two facts imply εα+β(λ) ∈ BS(3N). The element εα+β(λ) is conjugate to εφ(λ) for

every short root φ ∈ C2. This proves the second claim of the lemma and the third claim

follows by considering for x ∈ R the commutator

BA(2N) 3 (εβ(x), εα(λ)) = εα+β(±xλ)ε2α+β(±xλ2).
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and noting εα+β(±xλ) ∈ BA(N). For the fourth claim, note that we have by the second

claim, that εα(λ) ∈ BS(3N). Next inspect for x ∈ R the commutator:

BS(6N) 3 (εα(λ), εα+β(x)) = ε2α+β(±2xλ).

This proves the fourth claim. The last claim follows from part (1) and (2).

This enables us to prove Theorem 3.2.1:

Proof. The proof is very similar to the one of Theorem 3.1.1. First, let natural numbers

k, l be given with 1 ≤ k, l ≤ 4. Also if k = l, then we assume that k = l < 4. Further let

P ⊂ Z[yij] be a collection of polynomials describing membership in Sp4. The language L
and the theory Tkl is de�ned the same way as in the proof of Theorem 3.1.1 except for

four di�erences: First, we include a constant symbol e(k, l) instead of e(k, l, v). Secondly,

the sentence in (2) has the form

e(k, l) =

{
akl, if k 6= l

akk − ak+1,k+1, if not

Third, the sentence in item (3) describes that for each modelM the matrix AM is an

element of Sp4(RM). Fourth and most importantly, the sentences in (5) are a family of

sentences (θr)r∈N such that

θr :∀X1, . . . , Xr,∀e1, . . . er ∈ {0, 1,−1} : (P (X1) ∧ · · · ∧ P (Xr))→(
ε2α+β(2e(k, l) + e(k, l)2)εα+β(e(k, l)2) 6= (Ae1)X1 · · · (Aer)Xr)

)
Invoking Theorem 3.4.1 instead of Theorem 3.3.1 yields that a model of (1) through

(4) cannot be a model of all sentences in (5). Hence Tkl is inconsistent. Using Gödel's

compactness theorem, we obtain, as in the proof of Theorem 3.1.1, that there is an

Lk,l(C2) ∈ N such that the subset T 1
kl ⊂ Tkl that contains all sentences in (1) through (4)

and the single sentence θLk,l(C2) is already inconsistent.

Let R be an arbitrary commutative ring with 1 and let A ∈ Sp4(R) be given. This gives

us a modelM of the sentences in (1) through (4) and hence as T 1
kl is inconsistent this model

must violate the statement θMLk,l(C2). Thus there are elements g1, . . . , gLk,l(C2) ∈ Sp4(R) and

e1, . . . eLk,l(C2) ∈ {0, 1,−1} such that (abusing the notation slightly)

ε2α+β(2e(k, l) + e(k, l)2)εα+β(e(k, l)2) = (Ae1)g1 · · · (AeLk,l(C2))
gLk,l(C2)

Next, Lemma 3.4.2(5) implies 2(e(k, l)2) ∈ ε(A, φ, 6Lk,l(C2)) for all φ ∈ C2. If we sum
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over all admissible k, l, this implies for all φ ∈ C2 that

2l(A)2 =
∑
k,l

(2e(k, l)2) ⊂ ε(A, φ,
∑
k,l

6Lk,l(C2)).

So de�ne L(C2) :=
∑

k,l 6Lk,l(C2) and then l(A)2 has the desired property of V (l(A)2) ⊂
Π({A}): If m is a maximal ideal containing l(A)2, then it contains l(A) and so A maps

to a scalar matrix in Sp4(R/m), which is central in Sp4(R/m).

3.5 Boundedness of root elements in G2(R)

In this section, we prove Theorem 3.2.2. This will be shown by using:

Theorem 3.5.1. [15, (3.6) Main Theorem] Let R be a commutative ring with 1 and let

H be an E(G2, R)-normalized subgroup of G2(R). Then there is a pair of ideals J, J ′ in R

with

(x3, 3x|x ∈ J) ⊂ J ′ ⊂ J

such that

[E(R), E(J, J ′)] ⊂ H ⊂ G(J, J ′).

Remark 3.5.2. We are not de�ning G(J, J ′), but note that H ⊂ G(J, J ′) implies that

πJ(H) = {1}.

This implies:

Corollary 3.5.3. Let R be a commutative ring with 1, A ∈ G2(R) and H the smallest

subgroup of G2(R) normalized by E(G2, R) and containing A. Then ε3α+2β(a3), ε3α+2β(3a)

are elements of H for all a ∈ l(A).

Proof. This follows directly from Theorem 3.5.1. Note �rst that the �rst ideal J from

Theorem 3.5.1 must contain l(A), because A ∈ H becomes scalar after reducing modulo

J. Hence for a ∈ l(A), we get that 3a, a3 are elements of the second ideal J ′ from Theo-

rem 3.5.1. Lastly, {εβ(b)| b ∈ J ′} ⊂ H holds, because β is a root in the long A2 in G2

and this �nishes the proof.

Next, note the following:

Proposition 3.5.4. Let R be a commutative ring with 1 and let S ⊂ G2(R) be given.

Then

1. if for N ∈ N, λ ∈ R one has ε3α+2β(λ) ∈ BS(N), then

(a) {εφ(xλ)|x ∈ R} ⊂ BS(2N) for φ long and

(b) {εφ(2xλ)|x ∈ R} ⊂ BS(8N) for φ short hold.
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2. if εα(λ) ∈ BS(N), then {ε3α+2β(xλ3)|x ∈ R} ⊂ BS(4N) holds.

The implications are still true, if the balls BS are replaced by a normal subgroup of G2(R).

Proof. Part (1a) can be obtained by arguing as in the proof of Lemma 3.3.3 using the

root subsystem of G2 formed by long roots and isomorphic to A2. For part (1b) inspect

the following commutator formula for all x ∈ R :

εα+β(±xλ)ε2α+β(±x2λ)ε3α+β(±x3λ)ε3α+2β(±x3λ2) = (εβ(λ), εα(x)) ∈ BS(2N) (3.6)

Note that ε3α+β(x3λ), ε3α+2β(x3λ2) both commute with εα(1). Hence we obtain from equa-

tion (3.6):

BS(4N) 3
(
εα+β(±xλ)ε2α+β(±x2λ)ε3α+β(±x3λ)ε3α+2β(±x3λ2), εα(1)

)
=
(
εα+β(±xλ)ε2α+β(±x2λ), εα(1)

)
∼ (ε2α+β(±x2λ), εα(1)) · (εα(1), εα+β(±xλ))

= ε3α+β(±3x2λ) · ε2α+β(±2xλ)ε3α+β(±3xλ)ε3α+2β(±3x2λ2)

= ε2α+β(±2xλ)ε3α+β(±3xλ± 3x2λ)ε3α+2β(±3x2λ2)

Yet ε3α+β(±3xλ±3x2λ), ε3α+2β(±3x2λ2) ∈ BS(2N) holds by claim (1a) and hence ε2α+β(2xλ) ∈
BS(8N) holds as well. This �nishes the proof of the �rst claim of the lemma. For the

second claim inspect �rst the commutator

BS(2N) 3 (εβ(x), εα(λ)) = εα+β(±xλ)ε2α+β(±xλ2)ε3α+β(±xλ3)ε3α+2β(±x2λ2).

However, all of the factors besides ε3α+β(xλ3) in this product commute with εβ(1). Thus

taking the commutator with εβ(1), we obtain the second claim after conjugation.

With this in hand, Theorem 3.2.2 follows:

Proof. The proof is very similar to the proof of Theorem 3.2.1. As mentioned in Sec-

tion 2.3, G2 is a subgroup-scheme of GL8. Let natural numbers k, l be given with

1 ≤ k, l ≤ 8 and let P ⊂ Z[yij] be a collection of polynomials describing membership

in G2. Also if k = l, we further assume that k = l < 8.

The language L and the theory Tkl is de�ned the same way as in the proof of The-

orem 3.2.1 except for two di�erences: First, the sentence in item (3) describes that for

each modelM the matrix AM is an element of G2(RM) instead of Sp4(RM).

Second, the family of sentences (θr)r∈N in (5) has the form:

θr :∀X1, . . . , Xr,∀e1, . . . er ∈ {0, 1,−1} :

(P (X1) ∧ · · · ∧ P (Xr))→
(
(εβ(e(k, l)3) 6= (Ae1)X1 · · · (Aer)Xr

)
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In particular, the sentence in (2) still has the form

e(k, l) =

{
akl, if k 6= l

akk − ak+1,k+1, if not

One then obtains using Corollary 3.5.3, that a model of the sentences in (1) through

(4) cannot be a model of all sentences θr in (5). Hence Tkl is inconsistent. As before, we
can by invoking Gödel's compactness Theorem �nd an Lk,l(G2) ∈ N such that the subset

T 1
kl ⊂ Tkl that contains all sentences in (1) through (4) and the single sentence θLk,l(G2),

is already inconsistent.

Next, let R be an arbitrary commutative ring with 1 and let A ∈ G2(R) be given.

This gives us a model M of the sentences in (1) through (4) of Tkl and hence as T 1
kl

is inconsistent this model must violate the statement θMLk,l(G2). Thus there are elements

g1, . . . , gLk,l(G2) ∈ G2(R) and e1, . . . eLk,l(G2) ∈ {0, 1,−1} such that (abusing the notation

slightly)

εβ(e(k, l)3) = (Ae1)g1 · · · (AeLk,l(G2))
gLk,l(G2)

Proposition 3.5.4(1a) implies (e(k, l)3) ⊂ εl(A, 2Lk,l(G2)). Summing further over all ad-

missible k, l implies

l(A)3 =
∑
k,l

(e(k, l)3) ⊂ εl(A,
∑
k,l

2Lk,l(G2)).

De�ne next L(G2) :=
∑

k,l 2Lk,l(G2) and we are done, similar as in the proof of Theo-

rem 3.2.1.
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Chapter 4

Quantitative bounds on root elements

for principal ideal domains

In Chapter 3, we give a model theoretic argument for the existence of L(Φ) as in Theo-

rem 3.1.1, Theorem 3.2.1 and Theorem 3.2.2. In this chapter in contrast, we give explicit

values for L(Φ) for di�erent Φ in case the underlying ring R used to de�ne G(Φ, R) is a

principal ideal domain.

In the �rst section, we give values for L(Cn) for n ≥ 3 by way of matrix calculations

and generalizations of so-called Hessenberg-matrices. In the second section, we determine

L(C2). In the third section, we introduce a particular version of the Bruhat decomposition

for G(Φ, R) in case of R being a principal ideal domain and study some of the properties

of this decomposition and its connection to the combinatorics of the corresponding Weyl

group W (Φ). In the fourth and �fth section, we use this Bruhat decomposition to give a

value for L(E6) and L(G2) respectively, but again only in the case of R being a principal

ideal domain.

4.1 Explicit bounds for root elements of Sp2n(R)

For this section, we use a representation of the complex, simply-connected Lie group

Sp2n(C) that gives the following, classical de�nition of G(Cn, R) = Sp2n(R) instead of

the representation ρ introduced in Section 2.3. However, remember that both of these

representations still de�ne the same group G(Cn, R).

De�nition 4.1.1. Let R be a commutative ring with 1 and let

Sp2n(R) := {A ∈ R2n×2n|ATJA = J}
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be given with

J =

 0n In

−In 0n


This implies the following:

Lemma 4.1.2. Let R be a commutative ring with 1 and let A ∈ Sp2n(R) be given with

A =

 A1 A2

A3 A4


for A1, A2, A3, A4 ∈ Rn×n. Then the equation

A−1 = −JATJ =

 AT1 −AT2

−AT3 AT4


holds.

We use this identity frequently in the following matrix calculations usually without

reference. Every symplectic matrix can be writen as a 4 × 4-block matrix of n × n-

matrices and this decomposition shows up naturally in the calculation. Therefore we

will often signify this decomposition in blocks using vertical and horizontal lines in the

following matrices as done in the above lemma for example. These lines serve merely as

an optical help to read the calculations and have no mathematical meaning.

Let n ≥ 2 be given. We can choose a system of positive simple roots {α1, . . . , αn−1, β}
in Cn such that the Dynkin-diagram of this system of positive simple roots has the fol-

lowing form

βα1· · ·αn−1Cn :

Then subject to the choice of the maximal torus in Sp2n(C) as diagonal matrices in

Sp2n(C), the root elements for simple roots in G(Cn, R) = Sp2n(R) can be chosen as:

εαi(t) = I2n + t(en−i,n−i+1 − e2n−i+1,2n−i) for 1 ≤ i ≤ n− 1 and εβ(t) = I2n + ten,2n for all

t ∈ R.
More generally, the root elements εφ(x) for short, positive roots in φ ∈ Cn and x ∈ R

are then either I2n + t(eij − en+j,n+i) for 1 ≤ i < j ≤ n or I2n + t(ei,n+j + ej,n+i) for

1 ≤ i < j ≤ n. The root elements εψ(x) for long, positive roots in ψ ∈ Cn and t ∈ R are

then I2n + xei,n+i for 1 ≤ i ≤ n. Root elements for negative roots φ ∈ Cn and x ∈ R are

then εφ(x) = ε−φ(x)T .

The goal of this section is to prove the following:
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Theorem 4.1.3. Let R be a principal ideal domain, n ≥ 3 and let A ∈ Sp2n(R) be given.

Then there is an ideal I(A) in R such that

1. V (I(A)) ⊂ Π({A}) and

2. I(A) ⊂ εs(A, 64(1 + 5n)) hold.

Phrased di�erently, for R a principal ideal domain and n ≥ 3, one can can pick L(Cn) in

Theorem 3.1.1 as L(Cn) = 64(1 + 5n).

The �rst Hessenberg form

We start with a Lemma that gives us a Hessenberg form similar to the one used in [24]:

Lemma 4.1.4. Let R be a principal ideal domain, n ≥ 3 and A ∈ Sp2n(R) be given.

Then there is an element B ∈ Sp2n(R) such that A′ := B−1AB has the following form

A′ =



a′1,1 a′1,2 a′1,3 · a′1,n−2 a′1,n−1 a′1,n

a′2,1 a′2,2 a′2,3 · a′2,n−2 a′2,n−1 a′2,n

0 a′3,2 a′3,3 · a′3,n−2 a′3,n−1 a′3,n

0 0 a′4,3 · a′4,n−2 a′4,n−1 a′4,n

· · · · · · ·
0 0 0 · 0 a′n,n−1 a′n,n

A′2

A′3 A′4


with a′11 = a11 and a′21 = gcd(a21, a31, . . . , an1) up to multiplication with a unit in R and

A′2, A
′
3, A

′
4 ∈ Rn×n. We call a matrix of the form of A′ in Sp2n(R) a matrix in �rst

Hessenberg form.

Proof. If a3,1 = 0, then de�ne A(3) := A. Otherwise choose t3 := gcd(a2,1, a3,1). Observe

that x3 := −a3,1

t3
and y3 := a2,1

t3
are coprime elements of R and hence, we can �nd elements

u3, v3 ∈ R with u3y3 − x3v3 = 1. This implies that the matrix

T3 :=



1

u3 v3

x3 y3

In−3

0n

0n

1

y3 −x3

−v3 u3

In−3


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is an element of Sp2n(R). The matrix A(3) := T3AT
−1
3 has the (1, 1)-entry a1,1 and the

(3, 1)-entry

x3a
(3)
2,1 + y3a

(3)
3,1 = −a3,1

t3
a

(3)
2,1 +

a2,1

t3
a

(3)
3,1 = 0.

The entries of A(3) are denoted by a(3)
k,l .

Next, if a(3)
4,1 = 0, then de�ne A(4) := A(3). Otherwise choose t4 := gcd(a

(3)
2,1, a

(3)
4,1).

Observe that x4 := −a
(3)
4,1

t4
and y4 :=

a
(3)
2,1

t4
are coprime elements of R and hence, we can �nd

elements u4, v4 ∈ R with u4y4 − x4v4 = 1. This implies that the matrix

T4 :=



1

u4 0 v4

0 1 0

x4 0 y4

In−4

0n

0n

1

y4 0 −x4

0 1 0

−v4 0 u4

In−4


is an element of Sp2n(R). The matrix A(4) := T4A

(3)T−1
4 has the (1, 1)-entry a(3)

1,1 = a1,1,

the (3, 1)-entry 0 and the (4, 1)-entry

x4a
(3)
2,1 + y4a

(3)
4,1 = −

a
(3)
4,1

t4
a

(3)
2,1 +

a
(3)
2,1

t4
a

(3)
4,1 = 0.

The entries of A(4) are denoted by a(4)
k,l .

Carrying on this way, we �nd that the matrix A(n) is conjugate to A in Sp2n(R) and

has the (1, 1)-entry a1,1 and a
(n)
3,1 = a

(n)
4,1 = · · · = a

(n)
n,1 = 0. Further, the construction implies

the existence of a matrix D ∈ SLn−1(R) with

1 0 · · · 0

0

·
·
·
0

D


·



a1,1

a2,1

a3,1

·
·
an,1


=



a1,1

a
(n)
2,1

0

·
·
0


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But this implies that a(n)
2,1 is a multiple of gcd(a2,1, . . . , an,1). Further note D−1 ∈ SLn−1(R)

and hence 

1 0 · · · 0

0

·
·
·
0

D−1


·



a1,1

a
(n)
2,1

0

·
·
0


=



a1,1

a2,1

a3,1

·
·
an,1


implies that all of the elements of a2,1, . . . , an,1 are multiples of a(n)

2,1 and hence gcd(a2,1, . . . , an,1)

is also a multiple of a(n)
2,1 . So, up to multiplication with a unit a(n)

2,1 = gcd(a2,1, . . . , an,1).

Hence the �rst column of the matrix A(n) has the form described in the Lemma.

The remaining columns of A(n) can be brought to the desired form in a similar way, by

conjugating with a matrix of the form
I2

D
0n

0n
I2

D−T


for D ∈ SLn−2(R). Note, that under conjugation with such a matrix, the �rst column of

A(n) stays �xed and hence this yields the lemma.

Remark 4.1.5. 1. Upper Hessenberg matrices in Rn×n are matrices A = (aij) with

aij = 0 for i > j + 1. They are commonly used tools in numerical mathematics [20]

and de�ne subvarieties of �ag varieties which have been extensively studied [16] as

well.

2. The proof strategy is an adaption of [33, Theorem III.1] to the group Sp2n(R).

Lemma 4.1.4 (and Lemma 4.1.10 describing the second Hessenberg form) are actu-

ally the only steps in the proof of Theorem 4.1.3 requiring R to be a principal ideal

domain.

The strategy to prove Theorem 4.1.3 is to calculate carefully chosen nested commuators

of matrices in �rst (and second) Hessenberg-form with increasingly less entries until one

arrives at root elements.

Lemma 4.1.6. Let R be a commutative ring with 1 and n ≥ 3 and let A be a matrix

in �rst Hessenberg form in Sp2n(R) and B := A−1. Then X := (A, I2n + e1,n+1) has the
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following form:

X =



x1,1 x1,2 · x1,n

x2,1 x2,2 · x2,n

0 0 · 0

· · · ·
0 0 · 1

xn+1,1 xn+1,2 · xn+1,n

· · · ·
x2n,1 x2n,2 · x2n,n

x1,n+1 x1,n+2 0 · 0

x2,n+1 x2,n+2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

xn+1,n+1 xn+1,n+2 0 · 0

· · · · ·
x2n,n+1 x2n,n+2 0 · 1


with x1,n+1 = a11(bn+1,n+1 − bn+1,1)− 1 and x2,n+1 = a21(bn+1,n+1 − bn+1,1).

Proof. Now let A2, A3, A4 ∈ Rn×n be given such that A has the following form:

A =



a11 a12 a13 · a1,n−2 a1,n−1 a1n

a21 a22 a23 · a2,n−2 a2,n−1 a2n

0 a32 a33 · a3,n−2 a3,n−1 a3n

0 0 a43 · a4,n−2 a4,n−1 a4n

· · · · · · ·
0 0 0 · 0 an,n−1 an,n

A2

A3 A4


Then for the matrices B2 := −AT2 , B3 := −AT3 , B1 := AT4 ∈ Rn×n one has:

B =



B1 B2

B3

bn+1,n+1 bn+1,n+2 0 · 0 0 0

· · · · · · ·
b2n−3,n+1 b2n−3,n+2 b2n−3,n+3 · b2n−3,2n−2 0 0

b2n−2,n+1 b2n−2,n+2 b2n−2,n+3 · b2n−2,2n−2 b2n−2,2n−1 0

b2n−1,n+1 b2n−1,n+2 b2n−1,n+3 · b2n−1,2n−2 b2n−1,2n−1 b2n−1,2n

b2n,n+1 b2n,n+2 b2n,n+3 · b2n,2n−2 b2n,2n−1 b2n,2n


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Observe �rst:

Ae1,n+1A
−1 = Ae1,n+1B

=



0 · 0

0 · 0

0 · 0

· · ·
0 · 0

0 · 0

· · ·
0 · 0

a1,1 0 0 · 0 0 0

a2,1 0 0 · 0 0 0

0 0 0 · 0 0 0

· · · · · · ·
0 0 0 · 0 0 0

an+1,1 0 0 · 0 0 0

· · · · · · ·
a2n,1 0 0 · 0 0 0


B

=



a11bn+1,1 a11bn+1,2 · a11bn+1,n

a21bn+1,1 a21bn+1,2 · a21bn+1,n

0 0 · 0

· · · ·
0 0 · 0

an+1,1bn+1,1 an+1,1bn+1,2 · an+1,1bn+1,n

· · · ·
a2n,1bn+1,1 a2n,1bn+1,2 · a2n,1bn+1,n

a11bn+1,n+1 a11bn+1,n+2 0 · 0

a21bn+1,n+1 a21bn+1,n+2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

an+1,1bn+1,n+1 an+1,1bn+1,n+2 0 · 0

· · · · ·
a2n,1bn+1,n+1 a2n,1bn+1,n+2 0 · 0


This implies that

(A, I2n + e1,n+1) = A(I2n + e1,n+1)A−1(I2n − e1,n+1) = (I2n + Ae1,n+1A
−1)(I2n − e1,n+1)

= I2n + Ae1,n+1A
−1 − e1,n+1 − Ae1,n+1A

−1e1,n+1

=


1 + a11bn+1,1 a11bn+1,2 · a11bn+1,n

a21bn+1,1 1 + a21bn+1,2 · a21bn+1,n

0 0 · 0

· · · ·
0 0 · 1

an+1,1bn+1,1 an+1,1bn+1,2 · an+1,1bn+1,n

· · · ·
a2n,1bn+1,1 a2n,1bn+1,2 · a2n,1bn,n

a11(bn+1,n+1 − bn+1,1)− 1 a11bn+1,n+2 0 · 0

a21(bn+1,n+1 − bn+1,1) a21bn+1,n+2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

an+1,1(bn+1,n+1 − bn+1,1) + 1 an+1,1bn+1,n+2 0 · 0

· · · · ·
a2n,1(bn+1,n+1 − bn+1,1) a2n,1bn+1,n+2 0 · 1


This is precisely the form claimed in the lemma.

Next, we use the commutator from the previous Lemma to obtain a double commutator

with a low number of non-zero entries:

Lemma 4.1.7. Let R be a commutative ring with 1 and n ≥ 3 and let X ∈ Sp2n(R) be

of the same form as the commutator X described in Lemma 4.1.6. Then the commutator
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Z := (X, I2n + e2n,1 + en+1,n) has the form

Z =



1 · 0 z1,n

0 · 0 z2,n

0 · 0 0

· · · ·
0 · 0 1

0 · 0 zn+1,n

0 · 0 zn+2,n

· · · ·
0 · 0 z2n−1,n

z2n,1 · z2n,n−1 z2n,n

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

1 0 0 · 0

0 1 0 · 0

· · · · ·
0 0 0 · 0

z2n,n+1 z2n,n+2 0 · 1


with z1,n = x1,n+1 and z2,n = x2,n+1.

Proof. Let Y = (yij)1≤i,j≤2n be the inverse of X. We must study the following term:

X(e2n,1 + en+1,n)X−1 = (Xe2n,1)X−1 +X(en+1,nX
−1) = e2n,1Y +Xen+1,n

=



0 0 · 0

· · · ·
0 0 · 0

0 0 · 0

0 0 · 0

· · · ·
0 0 · 0

y11 y12 · y1n

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

y1,n+1 y1,n+2 0 · 0


+



0 · 0 x1,n+1

0 · 0 x2,n+1

0 · 0 0

· · · ·
0 · 0 0

0 · 0 xn+1,n+1

· · · ·
0 · 0 x2n,n+1

0 · 0

0 · 0

0 · 0

· · ·
0 · 0

0 · 0

· · ·
0 · 0



=



0 · 0 x1,n+1

0 · 0 x2,n+1

0 · 0 0

· · · ·
0 · 0 0

0 · 0 xn+1,n+1

0 · 0 xn+2,n+1

· · · ·
0 · 0 x2n−1,n+1

y11 · y1,n−1 y1n + x2n,n+1

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

y1,n+1 y1,n+2 0 · 0


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Next, observe that

X(e2n,1 + en+1,n)X−1(e2n,1 + en+1,n) = y1,n+1e2n,n.

Hence the matrix

(X, I2n + e2n,1 + en+1,n) = (I2n +X(e2n,1 + en+1,n)X−1)(I2n − e2n,1 − en+1,n)

= I2n +X(e2n,1 + en+1,n)X−1 − (e2n,1 + en+1,n)

−X(e2n,1 + en+1,n)X−1(e2n,1 + en+1,n)

= I2n + e2n,1X
−1 +Xen+1,n − e2n,1 − en+1,n − y1,n+1e2n,n

has the desired form.

Lemma 4.1.8. Let R be a commutative ring with 1 and n ≥ 3 and let Z ∈ Sp2n(R) be of

the same form as the commutator Z in Lemma 4.1.7.

1. Then the matrix (Z, I2n + en+1,1) has the form I2n + a(en+1,n + e2n,1) + be2n,n for

a = −z1,n and b = z2
1,n.

2. Then the matrix (Z, I2n + en+2,2) has the form I2n + a(en+2,n + e2n,2) + be2n,n for

a = −z2,n and b = z2
2,n

Proof. Set U := Z−1. Then U also has the form

1 · 0 u1,n

0 · 0 u2,n

0 · 0 0

· · · ·
0 · 0 1

0 · 0 un+1,n

0 · 0 un+2,n

· · · ·
0 · 0 u2n−1,n

u2n,1 · u2n,n−1 u2n,n

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

1 0 0 · 0

0 1 0 · 0

· · · · ·
0 0 0 · 0

u2n,n+1 u2n,n+2 0 · 1


First, observe

Zen+1,1Z
−1 = (en+1,1 + z2n,n+1e2n,1)U = en+1,1 + u1,nen+1,n + z2n,n+1(e2n,1 + u1,ne2n,n).
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This implies

(Z, I2n + en+1,1) = (I2n + Zen+1,1Z
−1)(I2n − en+1,1)

= (I2n + en+1,1 + u1,nen+1,n + z2n,n+1(e2n,1 + u1,ne2n,n))(I2n − en+1,1)

= I2n + u1,nen+1,n + z2n,n+1(e2n,1 + u1,ne2n,n).

Next, observe u1,n = z2n,n+1 = −z1,n and this gives the �rst claim of the lemma. The

second claim follows the same way.

Last, observe the following commutator formulas:

Lemma 4.1.9. Let R be a commutative ring with 1 and n ≥ 3 and let a, b, x ∈ R be

given.

1. Let S = I2n + a(en+1,n + e2n,1) + be2n,n be given. Then

(S, I2n + x(e12 − en+2,n+1)) = I2n + ax(e2n,2 + en+2,n)

holds.

2. Let S = I2n + a(en+2,n + e2n,2) + be2n,n ∈ Sp2n(R) be given. Then

(S, I2n + x(e2,1 − en+1,n+2)) = I2n + ax(e2n,1 + en+1,n)

holds.

Proof. For the �rst commutator formula note:

S = (I2n + a(en+1,n + e2n,1)) · (I2n + be2n,n).

Further I2n + be2n,n commutes with I2n + x(e12 − en+2,n+1). Hence

(S, I2n + x(e12 − en+2,n+1)) = (I2n + a(en+1,n + e2n,1), I2n + x(e1,2 − en+2,n+1))

= [I2n + x(I2n + a(en+1,n + e2n,1)) · (e1,2 − en+2,n+1) · (I2n − a(en+1,n + e2n,1))]

· (I2n − x(e12 − en+2,n+1))

= [I2n + x(e12 − en+2,n+1 + ae2n,2) · (I2n − a(en+1,n + e2n,1))] · (I2n − x(e1,2 − en+2,n+1))

= [I2n + x(e12 − en+2,n+1 + ae2n,2 + aen+2,n)] · (I2n − x(e1,2 − en+2,n+1))

= I2n + ax(e2n,2 + en+2,n).

follows.

For the second commutator formula note:

S = (I2n + a(en+2,n + e2n,2)) · (I2n + be2n,n).
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Further I2n + be2n,n commutes with I2n + x(e2,1 − en+1,n+2). Hence

(S, I2n + x(e2,1 − en+1,n+2)) = (I2n + a(en+2,n + e2n,2), I2n + x(e2,1 − en+1,n+2))

= [I2n + x(I2n + a(en+2,n + e2n,2)) · (e2,1 − en+1,n+2) · (I2n − a(en+2,n + e2n,2))]

· (I2n − x(e2,1 − en+1,n+2))

= [I2n + x(e21 − en+1,n+2 + ae2n,1) · (I2n − a(en+2,n + e2n,2))] · (I2n − x(e2,1 − en+1,n+2))

= [I2n + x(e21 − en+1,n+2 + ae2n,1 + aen+1,n)] · (I2n − x(e21 − en+1,n+2))

= I2n + ax(e2n,1 + en+1,n).

follows.

The second Hessenberg Form

Lemma 4.1.10. Let R be a principal ideal domain and let n ≥ 3 be given. Then for each

A ∈ Sp2n(R) there is a matrix B ∈ Sp2n(R) such that A′ := BAB−1 has the form:

A′ =



A′1 A′2

a′n+1,1 a′n+1,2 a′n+1,3 · a′n+1,n−2 a′n+1,n−1 a′n+1,n

a′n+2,1 a′n+2,2 a′n+2,3 · a′n+2,n−2 a′n+2,n−1 a′n+2,n

0 a′n+3,2 a′n+3,3 · a′n+3,n−2 a′n+3,n−1 a′n+3,n

0 0 a′n+4,3 · a′n+4,n−2 a′n+4,n−1 a′n+4,n

· · · · · · ·
0 0 0 · 0 a′2n,n−1 a′2n,n

A′4


with a′n+2,1 = gcd(an+2,1, an+3,1, . . . , a2n,1). We call a matrix of the form of A′ in Sp2n(R)

a matrix in second Hessenberg form.

We omit the proof, as it is very similar to the one of Lemma 4.1.4.

Lemma 4.1.11. Let R be a commutative ring with 1 and n ≥ 3 and let A be a matrix

in second Hessenberg form in Sp2n(R) and B = A−1. Then X := (A, I2n + e1,n+1) has the
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following form:

X =



x1,1 x1,2 0 · 0

x2,1 x2,2 0 · 0

· · · · ·
xn,1 xn,2 0 · 1

xn+1,1 xn+1,2 0 · 0

xn+2,1 xn+2,2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

x1,n+1 · x1,2n

x2,n+1 · x2,2n

· · ·
xn,n+1 · xn,2n

xn+1,n+1 · xn+1,2n

xn+2,n+1 · xn+2,2n

0 · 0

· · ·
0 · 1


with xn+2,n+1 = an+2,1(bn+1,n+1 − bn+1,1) and x1,n+1 = a11(bn+1,n+1 − bn+1,1)− 1.

Proof. Let A2, A3, A4 ∈ Rn×n be given such that A has the following form:

A =



A1 A2

an+1,1 an+1,2 an+1,3 · an+1,n−2 an+1,n−1 an+1,n

an+2,1 an+2,2 an+2,3 · an+2,n−2 an+2,n−1 an+2,n

0 an+3,2 an+3,3 · an+3,n−2 an+3,n−1 an+3,n

0 0 an+4,3 · an+4,n−2 an+4,n−1 an+4,n

· · · · · · ·
0 0 0 · 0 a2n,n−1 a2n,n

A4


Then for the matrices B2 := −AT2 , B1 := AT4 , B4 := AT1 ∈ Rn×n, one has:

B =



B1 B2

bn+1,1 bn+1,2 0 · 0 0 0

· · · · · · ·
b2n−3,1 b2n−3,2 b2n−3,3 · b2n−3,n−2 0 0

b2n−2,1 b2n−2,2 b2n−2,3 · b2n−2,n−2 b2n−2,n−1 0

b2n−1,1 b2n−1,2 b2n−1,3 · b2n−1,n−2 b2n−1,n−1 b2n−1,n

b2n,1 b2n,2 b2n,3 · b2n,n−2 b2n,n−1 b2n,n

B4



59



Observe �rst:

Ae1,n+1A
−1 = Ae1,n+1B

=



0 · 0

0 · 0

· · ·
0 · 0

0 · 0

0 · 0

0 · 0

· · ·
0 · 0

a1,1 0 0 · 0 0 0

a2,1 0 0 · 0 0 0

· · · · · · ·
an,1 0 0 · 0 0 0

an+1,1 0 0 · 0 0 0

an+2,1 0 0 · 0 0 0

0 0 0 · 0 0 0

· · · · · · ·
0 0 0 · 0 0 0


B

=



a11bn+1,1 a11bn+1,2 0 · 0

a21bn+1,1 a21bn+1,2 0 · 0

· · · · ·
an,1bn+1,1 an,1bn+1,2 0 · 0

an+1,1bn+1,1 an+1,1bn+1,2 0 · 0

an+2,1bn+1,1 an+2,1bn+1,2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

a11bn+1,n+1 · a11bn+1,2n

a21bn+1,n+1 · a21bn+1,2n

· ·
an,1bn+1,n+1 · an,1bn+1,2n

an+1,1bn+1,n+1 · an+1,1bn+1,2n

an+2,1bn+1,n+1 · an+2,1bn+1,2n

0 · 0

· · ·
0 · 0


This implies that

(A, I2n + e1,n+1) = A(I2n + e1,n+1)A−1(I2n − e1,n+1) = (I2n + Ae1,n+1A
−1)(I2n − e1,n+1)

= I2n + Ae1,n+1B − e1,n+1 − Ae1,n+1Be1,n+1

=


1 + a11bn+1,1 a11bn+1,2 0 · 0

a21bn+1,1 1 + a21bn+1,2 0 · 0

· · · · ·
an,1bn+1,1 an,1bn+1,2 0 · 1

an+1,1bn+1,1 an+1,1bn+1,2 0 · 0

an+2,1bn+1,1 an+2,1bn+1,2 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

a11(bn+1,n+1 − bn+1,1)− 1 a11bn+1,n+2 · a11bn+1,2n

a21(bn+1,n+1 − bn+1,1) a21bn+1,n+2 · a21bn+1,2n

· · · ·
an,1(bn+1,n+1 − bn+1,1) an,1bn+1,n+2 · an,1bn+1,2n

1 + an+1,1(bn+1,n+1 − bn+1,1) an+1,1bn+1,n+2 · an+1,1bn+1,2n

an+2,1(bn+1,n+1 − bn+1,1) 1 + an+2,1bn+1,n+2 · an+2,1bn+1,2n

0 0 · 0

· · · ·
0 0 · 1


This is precisely the form claimed in the lemma.

Lemma 4.1.12. Let R be a commutative ring with 1 and n ≥ 3 and let X ∈ Sp2n(R) be

of the same form as the commutator X described in Lemma 4.1.11. Then for Y := X−1
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the commutator Z := (X, I2n + en,1 − en+1,2n) has the form

Z =



1 0 0 · 0

· · · · ·
zn,1 zn,2 0 · 1

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 · 0 z1,2n

· · · ·
zn,n+1 · zn,2n−1 zn,2n

1 · 0 zn+1,2n

0 · 0 zn+2,2n

0 · 0 0

· · · ·
0 · 0 1


with zn+2,2n = −xn+2,n+1 and z1,2n = −x1,n+1.

Proof. We must study the following term:

X(en,1 − en+1,2n)X−1 = (Xen,1)X−1 −X(en+1,2nX
−1) = en,1Y −Xen+1,2n

=



0 0 0 · 0

· · · · ·
y11 y12 0 · 0

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 · 0

· · ·
y1,n+1 · y1,2n

0 · 0

0 · 0

0 · 0

· · ·
0 · 0


+



0 · 0

· · ·
0 · 0

0 · 0

0 · 0

0 · 0

· · ·
0 · 0

0 · −x1,n+1

· · ·
0 · −xn,n+1

0 · −xn+1,n+1

0 · −xn+2,n+1

0 · 0

· · ·
0 · 0



=



0 0 0 · 0

· · · · ·
y11 y12 0 · 0

0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 · 0 −x1,n+1

· · · ·
y1,n+1 · y1,2n−1 y1,2n − xn,n+1

0 · 0 −xn+1,n+1

0 · 0 −xn+2,n+1

0 · 0 0

· · · ·
0 · 0 0


Next, observe

X(en,1 − en+1,2n)X−1(en,1 − en+1,2n) = −y1,n+1en,2n.
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Hence the matrix

(X, I2n + en,1 − en+1,2n) = (I2n +X(en,1 − en+1,2n)X−1)(I2n − en,1 + en+1,2n)

= I2n +X(en,1 − en+1,2n)X−1 − en,1 + en+1,2n

−X(en,1 − en+1,2n)X−1(en,1 − en+1,2n)

= I2n +X(en,1 − en+1,2n)X−1 − en,1 + en+1,2n + y1,n+1en,2n

has the desired form.

Next, we have the following:

Lemma 4.1.13. Let R be a commutative ring with 1 and n ≥ 3 and let Z ∈ Sp2n(R) be

of the same form as the commutator Z in Lemma 4.1.12. Then

1. Then the matrix (Z−1, I2n+en+1,1) has the form I2n−z1,2n(en,1−en+1,2n)+z2
1,2nen,2n.

2. Then the matrix (Z, I2n+e2,n+2) has the form I2n−zn+2,2n(en,n+2+e2,2n)+z2
n+2,2nen,2n.

The proof is straightforward so we will omit it.

Lemma 4.1.14. Let R be a commutative ring with 1 and n ≥ 3 and let a, b, x ∈ R be

given.

1. Let S = I2n + a(en,1 − en+1,2n) + ben,2n be given. Then

(S, I2n + x(e1,n−1 − e2n−1,n+1)) = I2n + ax(en,n−1 − e2n−1,2n)

holds.

2. Let S = I2n + a(en,n+2 + e2,2n) + ben,2n be given. Then

(S, I2n + x(en+2,1 + en+1,2)) = I2n + ax(en,1 − en+1,2n)

holds.

Again, the calculations are straightforward, so we are going to omit them.

Constructing the level ideal

We will apply the previous calculations to various matrices. First, note the following

proposition:

Proposition 4.1.15. Let R be a principal ideal domain, n ≥ 3 and A = (aij)1≤i,j≤2n ∈
Sp2n(R) be given. Then there are ideals

1. I(1)
1 (A) ⊂ εs(A, 32) with a21, . . . , an,1 ∈ I(1)

1 (A) and
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2. I(2)
1 (A) ⊂ εs(A, 32) with an+2,1, . . . , a2n,1 ∈ I(2)

1 (A).

We denote the ideal I(1)
1 (A) + I

(2)
1 (A) ⊂ εs(A, 64) by I1(A).

Proof. The proof will be split in two parts. First we are going to construct the ideal I(1)
1 (A)

containing a2,1, . . . , an,1 and then the second ideal I(2)
1 (A) containing an+2,1, . . . , a2n,1.

For the �rst ideal put A in �rst Hessenberg form and call the resulting matrix A′ =

(a′ij)1≤i,j≤2n with inverse B′ = (b′ij)1≤i,j≤2n. Then apply Lemma 4.1.6 to A′ to obtain a

matrix X = (xij)1≤i,j≤2n as in the lemma with entries x1,n+1 = a′11(b′n+1,n+1 − b′n+1,1)− 1

and x2,n+1 = a′21(b′n+1,n+1 − b′n+1,1). Note X ∈ BA(2). Next, apply Lemma 4.1.7 to

obtain a matrix Z = (zij)1≤i,j≤2n with z1,n = x1,n+1 = a′11(b′n+1,n+1 − b′n+1,1) − 1 and

z2,n = x2,n+1 = a′21(b′n+1,n+1 − b′n+1,1). Note Z ∈ BA(4). Next, we apply Lemma 4.1.8 to

obtain two matrices S1 and S2 and then Lemma 4.1.9 to obtain for all x ∈ R matrices

T1(x), T2(x) ∈ BA(16) with

T1(x) = I2n + xz1,n(e2n,2 + en+2,n) = I2n + xa′11

(
(b′n+1,n+1 − b′n+1,1)− 1

)
(e2n,2 + en+2,n)

T2(x) = I2n + xz2,n(e2n,1 + en+1,n) = I2n + xa′21(b′n+1,n+1 − b′n+1,1)(e2n,1 + en+1,n).

Both of these matrices are root elements associated to short roots and hence as x ∈ R
was arbitrary, after conjugation with suitable Weyl-group elements, we obtain

I
(1)
1 (A) := (a′11(b′n+1,n+1 − b′n+1,1)− 1, a′21(b′n+1,n+1 − b′n+1,1)) ⊂ εs(A, 32).

Note

a′11(b′n+1,n+1 − b′n+1,1) ≡ 1 mod I(1)
1 (A).

Hence it follows

0 = 0 · a′11 ≡ a′21(b′n+1,n+1 − b′n+1,1)a′11 ≡ a′21 · 1 = a′21 mod I(1)
1 (A).

and hence a′21 ∈ I
(1)
1 (A) holds. But according to Lemma 4.1.4, the entry a′21 of the matrix

A′ is up to multiplication with a unit gcd(a21, . . . , an,1) for the entries a21, . . . , an,1 of the

initial matrix A. So in particular, we obtain for an arbitrary matrix A ∈ Sp2n(R) that

(a21, . . . , an,1) is a subset of I(1)
1 (A).

Running through the same line of calculations again, but using the second Hessenberg

form and the Lemmas 4.1.11 through Lemma 4.1.14 instead, yields the ideal I(2)
1 (A) ⊂

εs(A, 32) with an+2,1, . . . , a2n,1 ∈ I(2)
1 (A).

The proposition yields all of-diagonal entries of the �rst column save for the single

entry an+1,1 as arguments x for root elements εφ(x) for x ∈ R and φ ∈ Cn short. In the
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next proposition, we will explain how to obtain all o�-diagonal entries in εs(A,K) for an

appropriate K ∈ N.

Proposition 4.1.16. Let R be a principal ideal domain, n ≥ 3 and let A = (aij)1≤i,j≤2n ∈
Sp2n(R) be given. Then there is an ideal I ′(A) such that the following two properties hold:

1. I ′(A) ⊂ εs(A, 320n) and

2. (ai,j|1 ≤ i 6= j ≤ 2n) ∪ (ai,i − ai+1,i+1, an+i,n+i − an+i+1,n+i+1|1 ≤ i < n) ⊂ I ′(A).

Proof. First, de�ne for 2 ≤ k ≤ n the elements:

wk := e1,k − ek,1 + en+1,n+k − en+k,n+1 +
∑

1≤j≤2n,j 6=1,k,n+1,n+k

ej,j ∈ Sp2n(R).

The �rst column of the matrix Ak := wkAw
−1
k is

(ak,k, a2,k, . . . , ak−1,k,−a1,k, ak+1,k, . . . , an,k, an+k,k, an+2,k . . . , an+k−1,k,−an+1,k, an+k+2,k, . . . , a2n,k)
T .

Hence applying Proposition 4.1.15 to all of the matrices A2, . . . , An and the matrix A1 :=

A, there are ideals I1(A1), . . . , I1(An) all of them contained in εs(A, 64) with

a1,k, . . . , an,k, an+1,k, . . . , an+k−1,k, an+k+2,k, . . . , a2n,k ∈ I1(Ak)

for k ≥ 2 and

a2,1, . . . , an,1, an+2,1, . . . , a2n,1 ∈ I1(A1).

So, the ideal I2(A) := I1(A1) + · · ·+ I1(An) is contained in εs(A, 64n) and contains all o�-

diagonal entries of the �rst n columns ofA except possibly the entries an+1,1, an+2,2, . . . , a2n,n.

Next, observe that J itself is an element of Sp2n(R) and choose M1,M2,M3,M4 ∈ Rn×n

with

A =

(
M1

M3

M2

M4

)
.

Then we obtain

A′ := J−1AJ =

(
0n

In

−In
0n

)
·

(
M1

M3

M2

M4

)
· J =

(
−M3

M1

−M4

M2

)
·

(
0n

−In
In

0n

)

=

(
M4

−M2

−M3

M1

)

This implies, that if we apply the previous construction of I2(A) to the matrix A′, then we

obtain an ideal I2(A′) ⊂ εs(A
′, 64n) = εs(A, 64n) that contains all o�-diagonal entries of
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the last n columns of A, except possibly the entries a1,n+1, . . . , an,2n. Thus if we consider

the ideal I ′3(A) := I2(A) + I2(A′) ⊂ εs(A, 128n), it follows:

A ≡


a11 0 0 · 0

0 a22 0 · 0

· · · · ·
0 0 0 · ann

an+1,1 0 0 · 0

0 an+2,2 0 · 0

· · · · ·
0 0 0 · a2n,n

a1,n+1 0 0 · 0

0 a2,n+2 0 · 0

· · · · ·
0 0 0 · an,2n

an+1,n+1 0 0 · 0

0 an+2,n+2 0 · 0

· · · · ·
0 0 0 · a2n,2n

mod I ′3(A).

Thus the ideal I3(A) := (aij, ai,n+j, an+i,j, an+i,n+j|1 ≤ i 6= j ≤ n) is contained in I ′3(A) ⊂
εs(A, 128n).

Consequently, one also has

A−1 ≡


an+1,n+1 0 0 · 0

0 an+2,n+2 0 · 0

· · · · ·
0 0 0 · a2n,2n

−an+1,1 0 0 · 0

0 −an+2,2 0 · 0

· · · · ·
0 0 0 · −a2n,n

−a1,n+1 0 0 · 0

0 −a2,n+2 0 · 0

· · · · ·
0 0 0 · −an,2n

a1,1 0 0 · 0

0 a2,2 0 · 0

· · · · ·
0 0 0 · an,n

mod I3(A).

These congruences for A and A−1 imply

A′′ := (A, I2n + e1,2 − en+2,n+1)

=
(
I2n + A(e1,2 − en+2,n+1)A−1

)
· (I2n − e1,2 + en+2,n+1)

≡
[
I2n + (a11e12 + an+1,1en+1,2 − a2,n+2e2,n+1 − an+2,n+2en+2,n+1)A−1

]
· (I2n − e1,2 + en+2,n+1)

≡ [I2n + a11(an+2,n+2e12 − a2,n+2e1,n+2) + an+1,1(an+2,n+2en+1,2 − a2,n+2en+1,n+2)

− a2,n+2(−an+1,1e2,1 + a11e2,n+1)− an+2,n+2(−an+1,1en+2,1 + a11en+2,n+1)]

· (I2n − e1,2 + en+2,n+1)

= I2n + a11(an+2,n+2e12 − a2,n+2e1,n+2) + an+1,1(an+2,n+2en+1,2 − a2,n+2en+1,n+2)

− a2,n+2(−an+1,1e2,1 + a11e2,n+1)− an+2,n+2(−an+1,1en+2,1 + a11en+2,n+1)

− e1,2 + en+2,n+1 − an+1,1a2,n+2e22 − an+1,1a2,n+2en+1,n+1

− an+2,n+2an+1,1en+2,2 − a11a2,n+2e1,n+1

=


1 a11an+2,n+2 − 1 0 · 0

a2,n+2an+1,1 1− an+1,1a2,n+2 0 · 0

· · · · ·
0 0 0 · 1

0 an+1,1an+2,n+2 0 · 0

an+2,n+2an+1,1 −an+2,n+2an+1,1 0 · 0

· · · · ·
0 0 0 · 0

−a11a2,n+2 −a2,n+2a11 0 · 0

−a2,n+2a11 0 0 · 0

· · · · ·
0 0 0 · 0

1− an+1,1a2,n+2 −an+1,1a2,n+2 0 · 0

1− an+2,n+2a11 1 0 · 0

· · · · ·
0 0 0 · 1

mod I3(A).

Note that the (n + 2, 1)-entry a′′n+2,1 of A′′ is congruent to an+2,n+2an+1,1 modulo I3(A)

and the (1, 2)-entry of A′′ is congruent to an+2,n+2a11−1 modulo I3(A). Further note that

A′′ ∈ BA(2).
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Next, apply Proposition 4.1.15(2) to the matrix A′′ to obtain an ideal

I
(1)
4 (A) := I

(2)
1 (A′′) ⊂ εs(A

′′, 32) ⊂ εs(A, 64)

that contains a′′n+2,1, an element, which is congruent to an+2,n+2an+1,1 modulo I3(A).

So for each element X = (xij) of Sp2n(R), there is an ideal I(1)
4 (X) ⊂ εs(X, 64) which

contains modulo I3(X) the element xn+2,n+2xn+1,1.

Consider next, the matrix BA(2) 3 A′′2 := w2A
′′w−1

2 and note that its (2, 1)-entry is

congruent modulo I3(A) to a11an+2,n+2 − 1. Apply Proposition 4.1.15(1) to A′′2 to obtain

an ideal

I
(2)
4 (A) := I

(1)
1 (A′′2) ⊂ εs(A

′′
2, 32) ⊂ εs(A, 64)

that contains the (2, 1)-entry of A′′2, which is congruent to a11an+2,n+2 − 1 modulo I3(A).

The properties of these ideals imply that the ideal

I
(3)
4 (A) := I

(2)
1 (A′′) + I

(1)
1 (A′′2) ⊂ εs(A, 64 + 64) = εs(A, 128)

contains modulo I3(A), the elements an+2,n+2a11− 1 and an+2,n+2an+1,1 and consequently

the element an+1,1 modulo I3(A).

Phrased di�erently, for each matrixX ∈ Sp2n(R), there is an ideal I(3)
4 (X) ⊂ εs(X, 128),

which contains modulo the ideal I3(X) the element xn+1,1 and xn+2,n+2x11 − 1.

Observe that for l = 3, . . . , n, the conjugate Al of A de�ned before has

1. (n+ 1, 1)-entry equal to an+l,l,

2. (n+ 2, n+ 2)-entry equal to an+2,n+2 and

3. (1, 1)-entry equal to al,l.

Further, the conjugate A2 of A de�ned before has

1. (n+ 1, 1)-entry equal to an+2,2,

2. (n+ 2, n+ 2)-entry equal to an+1,n+1 and

3. (1, 1)-entry equal to a2,2.

Hence applying the previous construction of the ideal I(3)
4 (X) to the conjugatesA2, A3, . . . , An

then yields ideals I(3)
4 (A2), . . . , I

(3)
4 (An) ⊂ εs(A, 128) with the properties that

1. for l = 2, 3 . . . , n the ideal I(3)
4 (Al) contains the elements an+l,l modulo the ideal

I3(Al) = I3(A),

2. for l = 3, . . . , n the ideal I(3)
4 (Al) contains the element an+2,n+2al,l − 1 modulo the

ideal I3(Al) = I3(A) and
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To summarize, the ideal

I4(A) := I3(A) + I
(3)
4 (A) + I

(3)
4 (A2) + · · ·+ I

(3)
4 (An) ⊂ εs(A, 256n)

contains all the entries an+1,1, . . . , a2n,n and an+2,n+2a1,1−1, an+2,n+2a3,3−1, . . . , an+2,n+2an,n−
1. This implies:

A ≡


a11 0 0 · 0

0 a22 0 · 0

· · · · ·
0 0 0 · ann

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

a1,n+1 0 0 · 0

0 a2,n+2 0 · 0

· · · · ·
0 0 0 · an,2n

an+1,n+1 0 0 · 0

0 an+2,n+2 0 · 0

· · · · ·
0 0 0 · a2n,2n

mod I4(A).

But A is an element of Sp2n(R) and hence

allan+l,n+l ≡ 1 mod I4(A)

holds for all l = 1, . . . , n. Thus (an+l,n+l + I4(A))−1 = al,l + I4(A) holds in R/I4(A). On

the other hand an+2,n+2a1,1 − 1, an+2,n+2a3,3 − 1, . . . , an+2,n+2an,n − 1 are all elements of

I4(A) and hence

a1,1 + I4(A) = a3,3 + I4(A) = · · · = an,n + I4(A) = (an+2,n+2 + I4(A))−1 = a2,2 + I4(A)

holds in the ring R/I4(A) as well. Thus we obtain

A ≡


a22 0 0 · 0

0 a22 0 · 0

· · · · ·
0 0 0 · a22

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

a1,n+1 0 0 · 0

0 a2,n+2 0 · 0

· · · · ·
0 0 0 · an,2n

an+2,n+2 0 0 · 0

0 an+2,n+2 0 · 0

· · · · ·
0 0 0 · an+2,n+2

mod I4(A).

Note in particular, that all diagonal entries of A reduce to units in R/I4(A).

Similarly, for A′ = J−1AJ consider the conjugates A′l := wlA
′w−1

l for l = 2, . . . , n.

Observe that for l = 3, . . . , n the (n + 1, 1)-entry of A′l is −al,n+l and the (n + 2, n + 2)-

entry is a2,2. For A′2 the (n + 1, 1)-entry is −a2,n+2 and the (n + 2, n + 2)-entry is a1,1.

Further, for A′ the (n+ 1, 1)-entry is −a1,n+1 and the (n+ 2, n+ 2)-entry is a2,2.

Next, consider the ideals I(1)
4 (A′), I

(1)
4 (A′2), . . . , I

(1)
4 (A′n) ⊂ εs(A, 64) and observe that

according to the construction of these ideals, one has that

1. the ideal I(1)
4 (A′) contains the element −a1,n+1a2,2 modulo I3(A′) = I3(A),

2. for l = 3, . . . , n, the ideal I(1)
4 (A′l) contains the element −al,n+la2,2 modulo I3(A′l) =

I3(A) and
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3. the ideal I(1)
4 (A′2) contains the element −a2,n+2a1,1 modulo I3(A′2) = I3(A).

Next, consider the ideal:

I ′(A) := I4(A) + I
(1)
4 (A′) + I

(1)
4 (A′2) + · · ·+ I

(1)
4 (A′n) ⊂ εs(A, 256n+ 64n)

= εs(A, 320n).

As I3(A) ⊂ I ′(A), one concludes that

1. −a1,n+1a2,2 is an element of I ′(A),

2. for l = 3, . . . , n, the element −al,n+la2,2 is contained in I ′(A) and

3. the element −a2,n+2a1,1 is contained in I ′(A).

But remember that all diagonal entries of A reduce to units in R/I4(A) and consequently

also reduce to units in R/I ′(A). Hence as a1,n+1a2,2, a3,n+3a2,2, . . . , an,2na2,2 and a2,n+2a1,1

are all elements of I ′(A), we obtain that a1,n+1, a3,n+3, . . . , an,2n, a2,n+2 are also elements

of I ′(A). Hence we obtain

A ≡


a22 0 0 · 0

0 a22 0 · 0

· · · · ·
0 0 0 · a22

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

0 0 0 · 0

0 0 0 · 0

· · · · ·
0 0 0 · 0

an+2,n+2 0 0 · 0

0 an+2,n+2 0 · 0

· · · · ·
0 0 0 · an+2,n+2

mod I ′(A).

This �nishes the proof.

Remark 4.1.17. For a given element A ∈ Sp2n(R), it is possible that any one of the many

intermediate ideals I making up I ′(A) in the previous proof is already the entire ring R.

In this case, it is problematic to speak about units in the quotient R/I or R/I ′(A), as

we do in the proof. However, if any of the intermediate ideals I is already the entire ring

R, then the claim of Proposition 4.1.16 is obvious anyway. This is an unstated caveat

in many of the proofs to follow: If the construction of the sought after ideal yields an

intermediate ideal I which is already the entire ring R (or the appropriate analogue, say

2R in case of Sp4(R)), the claim of the corresponding statement is then usually true for

this intermediate ideal I = R already. All following proofs should be read with this caveat

in mind.

Modulo the ideal I ′(A) of the previous proposition, we have now reduced A to a

diagonal matrix of the form (a11 + I ′(A))In ⊕ (a11 + I ′(A))−1In. Next, we are going to

prove Theorem 4.1.3:
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Proof. Consider the matrix Ã := (A−1, I2n + e2n,1 + en+1,n) ∈ BA(2) and apply Proposi-

tion 4.1.15(2) to the matrix Ã to obtain an ideal

I
(2)
1

(
Ã
)
⊂ εs

(
Ã, 32

)
⊂ εs (A, 64)

that contains in particular the (2n, 1)-entry of Ã. De�ne next

I(A) := I ′(A) + I
(2)
1

(
Ã
)
⊂ εs(A, 64 + 320n) = εs(A, 64(1 + 5n))

for I ′(A) the ideal of Proposition 4.1.16. Slightly abusing notation, we obtain next:

Ã = (A−1, I2n + e2n,1 + en+1,n) = [I2n + A−1(e2n,1 + en+1,n)A] · (I2n − en+1,n − e2n,1)

≡

[
I2n +

(
a−1

1,1In

0n

0n

a1,1In

)
(e2n,1 + en+1,n)

(
a1,1In

0n

0n

a−1
1,1In

)]
· (I2n − en+1,n − e2n,1)

=

[
I2n + a11(e2n,1 + en+1,n)

(
a1,1In

0n

0n

a−1
1,1In

)]
· (I2n − en+1,n − e2n,1)

= [I2n + a2
1,1(e2n,1 + en+1,n)] · (I2n − en+1,n − e2n,1)

= I2n + (a2
1,1 − 1)(e2n,1 + en+1,n) mod I ′(A).

This implies that the (2n, 1)-entry of Ã is congruent to a2
1,1 − 1 modulo I ′(A). This

implies a2
1,1 − 1 ∈ I(A). Let m be a maximal ideal in V (I(A)). Note (a1,1 − 1)(a1,1+1) =

a2
1,1 − 1 ∈ m and so either a1,1 − 1 or a1,1 + 1 is an element of m. But in either case,

one has (a1,1 + m)−1 = a1,1 + m in the ring R/m and so πm(A) is necessarily scalar and

thus central in Sp2n(R/m). Hence m is also an element of Π({A}) and this �nishes the

proof.

We also note the following corollary of the proof:

Corollary 4.1.18. Let R be a principal ideal domain, n ≥ 3, A ∈ Sp2n(R). Then the ideal

I(A) of Theorem 4.1.3 is a sum of ideals J1(A), . . . , J7n+1(A) such that Ji(A) ⊂ εs(A, 64)

holds for all 1 ≤ i ≤ 7n+ 1.

Proof. Recall the Weyl group elements

wk := e1,k − ek,1 + en+1,n+k − en+k,n+1 +
∑

1≤j≤2n,j 6=1,k,n+1,n+k

ej,j ∈ Sp2n(R).

for k = 2, . . . , n. Then Xk shall denote the conjugates wkXw
−1
k for k = 2, . . . , n and an

arbitrary X ∈ Sp2n(R). Going through the proofs, one can see that I(A) is the sum of

the following ideals:

1. I(1)
1 (A), I

(1)
1 (A2), . . . , I

(1)
1 (An), I(2)

1 (A), I
(2)
1 (A2), . . . , I

(2)
1 (An), I(1)

1 (A′), I
(1)
1 (A′2), . . . , I

(1)
1 (A′n)
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and I(2)
1 (A′), I

(2)
1 (A′2), . . . , I

(2)
1 (A′n) for A′ := J−1AJ. These 4n ideals are all individ-

ually contained in εs(A, 32).

2. I(1)
4 (A), I

(1)
4 (A2), . . . , I

(1)
4 (An) and I(2)

4 (A), I
(2)
4 (A2), . . . , I

(2)
4 (An). These 2n ideals are

all individually contained in εs(A, 64).

3. I(1)
4 (A′), I

(1)
4 (A′2), . . . , I

(1)
4 (A′n). These n ideals are all individually contained in εs(A, 64).

4. I(2)
1 (Ã) for Ã := (A−1, I2n + e2n,1 + en+1,n). This ideal is contained in εs(A, 64).

So to summarize: I(A) is the sum of 7n + 1 ideals that are all individually contained in

εs(A, 64).

Remark 4.1.19. We have used n ≥ 3 at various places in the course of this section. First

and foremost, one cannot even put matrices in Hessenberg forms if n = 2, because the

constructions of Hessenberg forms rely on the block matrices used to conjugate A to have

at least one trivial column and row, which cannot be done in the same way for n = 2.

Second, for various commutator formulas, the root elements or products of root elements

obtained would take on a `degenerate form', where instead of having a root element, with

two o�-diagonal entries, we would only get one o�-diagonal entry and this one would admit

an additional factor of 2. This might happen for example in the �rst part of Lemma 4.1.9,

where n = 2 implies:

I2n + ax(e2n,2 + en+2,n) = I4 + ax(e2∗2,2 + e2+2,2) = I4 + 2axe4,2.

The possibility to avoid the use of these degenerate commutator formulas is due to the

presence of a root subsystem of Cn spanned by simple roots in Cn and isomorphic to A2

for n ≥ 3.

4.2 Explicit bounds for root elements of Sp4(R)

In this section, we determine L(C2) for principal ideal domains:

Theorem 4.2.1. Let R be a principal ideal domain and let A ∈ Sp4(R) be given. Then

there is an ideal I(A) in R such that

1. V (I(A)) ⊂ Π({A}) and

2. 2I(A) ⊂ ε(A, φ, 384) holds for all φ ∈ C2.

Phrased di�erently, for R a principal ideal domain, one can can pick L(C2) in Theo-

rem 3.2.1 as L(C2) = 384.

As a �rst step, we establish a form of Hessenberg matrices in Sp4(R) :
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Lemma 4.2.2. Let R be a principal ideal domain and A = (aij)1≤i,j≤4 ∈ Sp4(R). Then

there is a matrix B ∈ Sp4(R) such that BAB−1 has (3, 2)-entry 0 and the same (4, 2)-entry

as A.

Proof. If a3,2 = 0, then we are done. Otherwise choose t := gcd(a3,2, a1,2), x := a3,2

t
and

y := −a1,2

t
. Observe that x, y ∈ R are coprime and hence we can �nd u, v ∈ R such that

xv − yu = 1. Then the matrix

B :=


u 0

0 1

v 0

0 0

x 0

0 0

y 0

0 1


is an element of Sp4(R) and has the desired property.

From this one can obtain:

Lemma 4.2.3. Let R be a commutative ring with 1 and let A = (aij)1≤i,j≤4 ∈ Sp4(R) be

given with a3,2 = 0. Then X := (A, I4 + e2,4) has the form

X =


1 x1,2

0 x2,2

x1,3 x1,4

x2,3 x2,4

0 0

0 x42

1 0

x4,3 x4,4


with x4,2 = −a2

4,2.

We will omit the proof, as it is straight forward. Next:

Lemma 4.2.4. Let R be a commutative ring with 1 and let X ∈ Sp4(R) be of the same

form as the commutator X in the Lemma 4.2.3. Then the commutator Z := (X, I4 +

e2,3 + e1,4) has the form

Z = I4 + a(e12 − e43) + b(e14 + e23) + ce1,3

with a = −x4,2, b = x2,2 − 1 and c = 2x1,2 + x4,2.

Again, we omit the proof. Next, we obtain:

Lemma 4.2.5. Let R be a commutative ring with 1 and let a, b, c, x ∈ R be given. Further

let Z = I4 + a(e12 − e43) + b(e14 + e23) + ce1,3 be given. Then (Z, I4 + x(e1,4 + e2,3)) =

I4 + 2axe1,3 holds.

Again, we omit the proof. From this we can obtain:
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Proposition 4.2.6. Let R be a principal ideal domain and A ∈ Sp4(R) be given. Then

2a2
42R ⊂ ε(A, φ, 8) holds for all φ ∈ C2 long.

Proof. Observe that according to Lemma 4.2.2 the matrix A is conjugate to a matrix A′

with a′3,2 = 0 and a′4,2 = a4,2. So assume a3,2 = 0. Then applying �rst Lemma 4.2.3 to

obtain a matrix X, then Lemma 4.2.4 to X to obtain a matrix Z and then lastly applying

Lemma 4.2.5 to Z yields that

2a2
4,2R = 2a′24,2R ⊂ ε(A, φ, 8)

for φ ∈ C2 long.

Using Proposition 4.2.6, we can prove Theorem 4.2.1:

Proof. The basic idea is to construct di�erent matrices from A = (aij) that have (powers

of) entries of A in their respective (4, 2)-entry and then to apply Proposition 4.2.6.

First, note that applying Lemma 4.2.2, we may assume that a32 = 0 and let φ ∈ C2

be an arbitrary long root. First, we de�ne the matrix:

w2 := e1,2 − e2,1 + e3,4 − e4,3 ∈ Sp4(R).

Observe that the (4, 2)-entry of w2Aw
−1
2 is a3,1 and hence Proposition 4.2.6 yields

2a2
3,1R ⊂ ε(A, φ, 8).

Similarly w2J
−1AJw−1

2 has the (4, 2)-entry −a1,3 and J−1AJ has the (4, 2)-entry −a2,4.

Thus Proposition 4.2.6 yields

2(a2
4,2, a

2
3,1, a

2
1,3, a

2
2,4) ⊂ ε(A, φ, 32).

Next, consider the matrix

BA(2) 3 A′ = (A, I4 + e4,2) = I4 +


a14a34 a14(a44 + a24)

a24a34 a24(a44 + a24)

−a2
14 −a14a24

−a14a24 −a2
24

a2
34 a34(a44 + a24)

a44a34 a44(a44 + a24)− 1

−a34a14 −a34a24

−a14a44 −a44a24


Observe that w2A

′w−1
2 has the (4, 2)-entry a2

3,4 and hence Proposition 4.2.6 implies

2a4
3,4R ⊂ ε(w2A

′w−1
2 , φ, 8) = ε(A′, φ, 8) = ε(A, φ, 16).
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Thus for each matrix X = (xij) ∈ Sp4(R) one has

I1(X) := 2x4
3,4R ⊂ ε(X,φ, 16). (4.1)

Next, observe that J−1A′J has the form

J−1A′J = I4 +


−a34a14 −a34a24

−a14a44 −a44a24

−a2
34 −a34(a44 + a24)

−a44a34 −a44(a44 + a24) + 1

a2
14 a14a24

a14a24 a2
24

a14a34 a14(a44 + a24)

a24a34 a24(a44 + a24)


The (4, 2)-entry of w2J

−1A′Jw−1
2 is a2

1,4 and hence Proposition 4.2.6 implies

2a4
1,4R ⊂ ε(w2J

−1A′Jw−1
2 , φ, 8) = ε(A′, φ, 8) = ε(A, φ, 16).

and hence

2a4
1,4R + 2a4

3,4R ⊂ ε(A, φ, 32)

holds.

Further, the (4, 2)-entry of A′ is a44(a44 + a24)− 1 and hence Proposition 4.2.6 implies

2(a44(a44 + a24)− 1)2R ⊂ ε(A′, φ, 8) = ε(A, φ, 16).

Summarizing, we obtain

2(a4
1,4, a

4
3,4, (a44(a44 + a24)− 1)2) ⊂ ε(A, φ, 3 ∗ 16) = ε(A, φ, 48).

Note, that the fourth column of J−1AJ is

(−a32,−a42, a12, a22)T .

Thus one obtains from equation (4.1) that

I1(J−1AJ) = 2a4
1,2R ⊂ ε(J−1AJ, φ, 16) = ε(A, φ, 16).

Next, consider

T := J−1(A, I4 + e12 − e4,3)J ∈ BA(2)

and use equation (4.1) to see:

I1(T ) = 2t434R ⊂ ε(T, φ, 16) ⊂ ε(A, φ, 32).
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To summarize, we obtain for

I(A) := (a2
4,2, a

2
3,1, a

2
1,3, a

2
2,4, a

4
1,4, a

4
3,4, (a44(a44 + a24)− 1)2, a4

1,2, t
4
34)

that 2I(A) ⊂ ε(A, φ, 32 + 48 + 16 + 32) = ε(A, φ, 128) holds for all φ ∈ C2 long. So

according to Lemma 3.4.2(2), one has 2I(A) ⊂ ε(A, φ, 384) for all φ ∈ C2. Remember

that l(A) is the ideal in R de�ned as (aij, aii − ajj|1 ≤ i 6= j ≤ 4). We claim further that

l(A) ⊂
√
I(A) holds, which if true implies Π(I(A)) ⊂ Π({A}) and �nishes the proof. To

this end, it su�ces to show that each maximal m containing I(A) must also contain l(A).

So letm be a maximal ideal containing I(A). Then clearly a4,2, a3,1, a1,3, a2,4, a1,4, a3,4, a12

as well as t34 and a44(a44 + a24)− 1 are all elements of m. Summarizing, we obtain

A ≡


a11 0

a21 a22

0 0

a23 0

0 0

a41 0

a33 0

a43 a44

 mod m.

However, A is an element of Sp4(R) and thus a21, a23, a41 and a43 must also be elements

of m. Thus A is congruent to a diagonal matrix modulo m. For the same reason,

a11 +m = (a33 +m)−1 and a22 +m = (a44 +m)−1

must hold in the ringR/m. Let πm : Sp4(R)→ Sp4(R/m) be the reduction homomorphism

induced by the quotient map R→ R/m and set u := a11 +m and v := a22 +m. Then we

obtain:
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πm(T ) = J−1(πm(A), I4 + e12 − e4,3)J

= J−1
(
I4 + πm(A)(e12 − e4,3)πm(A−1)

)
· (I4 − e12 + e4,3)J

= J−1

I4 +


u 0

0 v
02

02

u−1 0

0 v−1

 (e12 − e4,3)πm(A−1)

 · (I4 − e12 + e4,3)J

= J−1

I4 + (ue12 − v−1e43)


u−1 0

0 v−1
02

02

u 0

0 v



 · (I4 − e12 + e4,3)J

= J−1(I4 + uv−1(e12 − e43)) · (I4 − e12 + e4,3)J

= J−1(I4 + (uv−1 − 1)(e12 − e43))J = I4 + (uv−1 − 1)(e34 − e21).

But this implies that t34 + m agrees with uv−1 − 1 in R/m. But t34 is an element of

m and hence

a11 +m = u = v = a22 +m

as well as

a33 +m = u−1 = v−1 = a44 +m

follows. Further, a44(a44 + a24)− 1 and a24 are both elements of m and hence

a2
44 − 1 = (a44 − 1) · (a44 + 1)

must also be an element of m. But then either a44 − 1 or a44 + 1 must be an element of

m. Hence a44 +m agrees with either 1 +m or −1 +m and thus

a44 +m = (a44 +m)−1

holds in R/m. However, recall that (a44 +m)−1 = a22 +m and hence we obtain

a11 +m = a22 +m = (a44 +m)−1 = a44 +m = a33 +m

and consequently πm(A) is a scalar matrix and so l(A) ⊂ m holds, which �nishes the

proof.
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4.3 Bruhat decomposition for principal ideal domains

In this section, we will describe another method to provide the values L(Φ) for Chevalley

groups G(Φ, R) de�ned over principal ideal domains using a variant of the Bruhat decom-

position. It yields noticeably worse bounds than the one for Sp2n(R) in this thesis and

the one for SLn(R) in [24]. However, it has the advantage of being more conceptual and

so it is easier to apply it to the exceptional root systems. First recall the word norm lS

on groups:

De�nition 4.3.1. Let G be a group and S ⊂ G be given with S = S−1 a generating set

of G. Then de�ne the function lS : G→ N0 by lS(1) := 0 and by

lS(x) := min{n ∈ N|∃s1, . . . , sn ∈ S : x = s1 · · · sn}

for x 6= 1.

Next, we need the following de�nition:

De�nition 4.3.2. Let G be a group and S ⊂ G be given with S = S−1 a generating set

of G. Further let w = s1 · · · sn be given with all si ∈ S.

1. The tuple (or string) (s1, . . . , sn) ∈ Sn is called an expression for w in terms of

S of length n. If n = lS(w) holds, then the tuple (s1, . . . , sn) is called a minimal

expression for w (with respect to S).

2. Let a sequence of integers 1 ≤ i1 < i2 < · · · < ik ≤ n be given. Then

((si1 , i1), (si2 , i2) . . . , (sik , ik))

is called a subexpression of (s1, . . . , sn).

3. An element w′ ∈ G is called a subword of (s1, . . . sn) if there is a sequence of integers

1 ≤ i1 < i2 < · · · < ik ≤ n such that w′ = si1 · · · sik and lS(w′) = k. Further, we

denote the set of subwords of (s1, . . . , sn) by S(s1, . . . , sn).

Remark 4.3.3.

1. We will usually omit writing down the positions when denoting subexpressions

to simplify notations. So for example, we will write (si1 , si2 . . . , sik) instead of

((si1 , i1), (si2 , i2) . . . , (sik , ik)).

2. The set S(s1, . . . , sn) depends on the string (s1, . . . , sn) and not on the group element

w = s1 · · · sn represented by the string. Yet S(s1, . . . , sn) is a subset of G itself and

not of the set S<+∞ of strings in S.
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If G is the Weyl group W (Φ) of an irreducible root system, then the generating set S

is usually chosen as the set F = {wα1 , . . . , wαn} of fundamental re�ections associated to a

system of positive, simple roots Π = {α1, . . . , αn}. However, according to [41, Chapter 8,

p. 74, Lemma 53], if (wαj1 , . . . , wαjk ) is a minimal expression with respect to F for an

element w ∈ W (Φ), then the set S(wαj1 , . . . , wαjk ) is actually independent of the minimal

expression (wαj1 , . . . , wαjk ) and only depends on the element w itself. Consequently, we

will write S(w) in this case.

Next, for Φ an irreducible root system, we describe certain subgroups of G(Φ, R)

needed for the next proposition.

A principal ideal domain is an integral domain by de�nition and let Q be the �eld

of fractions of R. Then according to [41, Chapter 3, p. 31, Corollary 6], for α ∈ Φ there

exists a group homomorphism ψα : SL2(Q)→ G(Φ, Q) uniquely determined through

ψα(I2 + xe12) = εα(x) and ψα(I2 + xe21) = ε−α(x)

for x ∈ Q. Note that SL2(R) is a subgroup of SL2(Q) and de�ne the subgroup Gα(R) of

G(Φ, Q) as Gα(R) := ψα(SL2(R)). However the group Gα(R) is actually a subgroup of

G(Φ, R) according to [41, Chapter 8, p. 67, Lemma 48].

Further recall the Weyl group W (Φ) from Appendix A and the fact that according to

Remark 2.2.7 each element w of W (Φ) has an associated element w of G(Φ, R). We can

state the following proposition now:

Proposition 4.3.4. [41, Chapter 8, p. 68, Corollary 1] Let R a principal ideal domain

with fraction �eld Q, Φ an irreducible root system of rank at least 2, F = {wα1 , . . . , wαu}
the set of fundamental re�ections associated with the system of positive, simple roots

Π = {α1, . . . , αu} of Φ and W (Φ) the corresponding Weyl group be given.

1. Then for each αi ∈ Π, there is a subset Yαi ⊂ Gαi(R) such that

Gαi(R)− {εαi(x)hαi(t)| t ∈ R∗, x ∈ R} = {εαi(x)hαi(t)| t ∈ R∗, x ∈ R} · Yαi

holds with uniqueness of decomposition into factors on the right.

2. Further, let w ∈ W (Φ) and j1, . . . , jk ∈ {1, . . . , u} be given with k = lF (w) and

w = wαj1 · · ·wαjk . Then (B(Q)wB(Q))∩G(Φ, R) = B(R) ·Yαj1 · · ·Yαjk holds for the

Yαi from the �rst part of the proposition, with uniqueness of decomposition on the

right.

Note, further:

Lemma 4.3.5. [41, Chapter 8, p. 65, Lemma 46] Let Φ an irreducible root system of

rank at least 2, F = {wα1 , . . . , wαu} the set of fundamental re�ections associated with the
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system of positive, simple roots {α1, . . . , αu} of Φ, W (Φ) the corresponding Weyl group

and w0 the longest word of W (Φ) with respect to lF . Then S(w0) = W (Φ) holds.

Also note:

De�nition 4.3.6. Let Φ an irreducible root system, Π = {α1, . . . , αu} a system of positive

simple roots, χ ∈ Φ the positive root of highest weight with respect to Π and ψ ∈ Φ a

positive root be given. Then let T (ψ) be de�ned as follows

T (ψ) := {ψ +
u∑
i=1

kiαi|∀i ∈ {1, . . . , u} : ki ≥ 0} ∩ Φ.

Remark 4.3.7. Note that, T (ψ) is an ideal in the set of positive roots of Φ : If α =

ψ +
∑u

i=1 kiαi ∈ T (ψ) is given and β =
∑u

i=1 miαi is another positive root such that

α + β is also a root, then obviously α + β = ψ +
∑u

i=1(ki + mi)αi is also an element of

T (ψ). Hence according to Proposition 2.2.13, the set
∏

µ∈T (ψ) εµ(R) is a normal subgroup

of B+(Φ, R) for R a commutative ring with 1.

Next, note the following:

Lemma 4.3.8. Let R a principal ideal domain with fraction �eld Q, Φ an irreducible

root system and F = {wα1 , . . . , wαu} the set of fundamental re�ections associated with the

system of positive, simple roots {α1, . . . , αu} of Φ be given. Further, let w ∈ W (Φ) and

w′ ∈ S(w) be given. Assume further that for χ the positive root of highest weight in Φ,

the root ψ := w(χ) is a positive root. Then for A ∈ (B(Φ, Q)w′B(Φ, Q)) ∩ G(Φ, R), the

commutator (A, εχ(1)) is an element of
∏

µ∈T (ψ) εµ(R).

Proof. We will prove this lemma in three steps. First, we will assume that R is an

algebraically closed �eld K and w′ = w. Second, we assume w′ ∈ S(w) is arbitrary

and show the lemma in this case and last, we deduce the claim in the case that R is a

principal ideal domain. For the �rst step, note that according to [41, Chapter 3, p. 26,

Theorem 4'], we may assume that there are b ∈ B(Φ, K) and an element u ∈ U+(E6, K)

such that wuw−1 is an element of U−(E6, K) and A = bwu. Then

(A, εχ(1)) = (bwu, εχ(1)) = (u, εχ(1))bw · (bw, εχ(1)) = 1bw · (w, εχ(1))b · (b, εχ(1))

= (εw(χ)(±1)εχ(−1))b · (b, εχ(1)) = εψ(±1)bεχ(−1))b · (b, εχ(1))

But according to Remark 4.3.7, the subgroup
∏

µ∈T (ψ) εµ(K) is normalized by B(Φ, K).

Hence ψ ∈ T (ψ) implies that εψ(±1)b ∈
∏

µ∈T (ψ) εµ(K). On the other hand, {χ} is an

ideal in the set of positive roots of Φ and so εχ(−1))b · (b, εχ(1)) is an element of εχ(K)

according to Proposition 2.2.13. Summarizing, the entire commutator (A, εχ(1)) is an

element of the subgroup
∏

µ∈T (ψ) εµ(K). This �nishes the �rst step.
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For the second step, let w′ ∈ S(w) be given and let Xw denote the Zariski-closure of

B(Φ, K)wB(Φ, K) in G(Φ, K). Then the map

m : Xw → G(Φ, K), B 7→ (B, εχ(1))

is a morphism of algebraic varieties. Furthermore, B(Φ, K)wB(Φ, K) maps into the set∏
µ∈T (ψ) εµ(K) under m according to the �rst step. However, the set

∏
µ∈T (ψ) εµ(K) is

Zariski-closed and hence the Zariski-closure Xw of B(Φ, K)wB(Φ, K) must also map into∏
µ∈T (ψ) εµ(K). But [41, Chapter 8, p. 74, Theorem 23] implies that B(Φ, K)w′B(Φ, K)

is a subset of Xw and hence m(B(Φ, K)w′B(Φ, K)) ⊂
∏

µ∈T (ψ) εµ(K) holds. This �nishes

the second step.

For the third step, note �rst that if R is a principal ideal domain, Q its fraction �eld

and K the algebraic closure of Q, then the second step implies for A ∈ G(Φ, R) that

(A, εχ(1)) is an element of
∏

µ∈T (ψ) εµ(K). However, both εχ(1) and A are elements of

G(Φ, Q) and the group operations in G(Φ, K) are de�ned over its prime �eld K0 according

to [41, Chapter 5, p. 39, Existence Theorem]. Thus (A, εχ(1)) is actually an element of∏
µ∈T (ψ) εµ(Q) and thus Proposition 2.2.13 implies that (A, εχ(1)) is actually an element

of
∏

µ∈T (ψ) εµ(R). This �nishes the proof.

Further, we need the following technical Lemma occasionally:

Lemma 4.3.9. Let R be a principal ideal domain and let Φ be an irreducible root system

and φ1, φ2 ∈ Φ with φ1 + φ2 6= 0. Further let t ∈ R and A ∈ Gφ2(R) be given and set

Y (φ1, φ2) = {kφ1 + lφ2| k ∈ N, l ∈ Z} ∩ Φ.

1. If both φ1 + φ2 and φ1 − φ2 are not elements of Φ, then

(A, εφ1(t)) = 1

follows.

2. If φ1 + φ2 or φ1 − φ2 is an element of Φ, then

(A, εφ1(t)) ∈
∏

ψ∈Y (φ1,φ2)

εψ(R).

3. If Φ ∼= A2 with positive simple roots φ1, φ2,

A = ψφ2

(
a b

c d

)
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then

(εφ1(t), A) = εφ1(t(1− d))εφ1+φ2(−tb)

and

(εφ1+φ2(t), A) = εφ1+φ2(t(1− a))εφ1(tc).

Proof. Let Q be the �eld of fractions of R. In this proof, we consider G(Φ, R) as a

subgroup of G(Φ, Q).

If neither φ1 +φ2 nor φ1−φ2 are elements of Φ, then εφ1(t) commutes with all elements

in εφ2(Q) and in ε−φ2(Q). However, we can �nd a, b, c, d ∈ R such that

A = ψφ2

(
a b

c d

)
.

We assume �rst that c 6= 0 and so we can write A in G(Φ, Q) as

A = εφ2(c−1(a− 1)) · ε−φ2(c) · εφ2(c−1(d− 1)).

But εφ1(t) commutes with all these factors of A in G(Φ, Q) and hence the �rst claim of

the lemma holds in case of c 6= 0. The cases of b 6= 0 and both b and c equal to 0 are

dealt with similarly. This yields the �rst claim of the lemma. The second claim follows

by a similar density argument as Lemma 4.3.8. The third claim of the lemma can simply

be checked by matrix calculation in SL3(R).

4.4 Explicit bounds for root elements of E6(R)

Choose a system of positive simple roots Π = {α, β, γ, δ, ε, φ} ⊂ E6 such that their

corresponding Dynkin-diagram looks as follows

εδγ

φ

βαE6 :

We will show the following:

Proposition 4.4.1. Let R be a principal ideal domain and A ∈ E6(R). Then there is an

ideal I0(A) in R with

I0(A) ⊂ ε(A, 10 · 60211

)

such that for each maximal ideal m with I0(A) ⊂ m the following equation holds

πm((A, εα+2β+3γ+2δ+ε+2φ(1))) = 1.
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We will prove this proposition using Lemma 4.3.8. As a �rst step, note:

Lemma 4.4.2. The longest element in the Weyl-group W (E6) with respect to the funda-

mental re�ections F := {wα, wβ, wγ, wδ, wε, wφ} is

w0 = (wφwβwδwγwαwε)
6

and this equation gives a minimal expression for w0 in terms of F .

Proof. According to [22, Exerc. 3.19], the longest element w0 inW (E6) is equal to wh(E6)/2

for w = wφwβwδwγwαwε, if h(E6) := ord(w) is even. Thus to prove the lemma, it

su�ces to show that h(E6) = 12 and that N(E6) := lF (w0) = 36. But according to

[41, Appendix, p. 151, (2)Corollary], the length lF (w′) of an element w′ ∈ W (E6) is

the number of positive roots ψ ∈ E+
6 with w′(ψ) a negative root and according to [41,

Appendix, p. 151, (24)Theorem], the longest element w0 of W (E6) maps each root in

E+
6 to a negative root. This implies that N(E6) is the total number of positive roots in

E6, which is 36 as can be seen from [18, Appendix, Table B, p. 528]. Further, one has

the equation 72 = 2N(E6) = h(E6)rank(E6) = 6h(E6) according to [22, 3.18]. But this

implies h(E6) = 12 and �nishes the proof.

Lemma 4.4.3. The sequences

1. s1 := (wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε) and

2. s2 := (wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ)

of fundamental re�ections in W (E6) give minimal expressions with respect to the funda-

mental re�ections for the corresponding Weyl-group elements w1, w2 ∈ W (E6) and

w1(χ) = w2(χ) = γ and T (γ) = E+
6 − {α, β, δ, ε, φ, α + β, δ + ε}.

The proof of this lemma can be found in Appendix C. The last preparatory lemma is

the following:

Lemma 4.4.4. Let R be a commutative ring with 1 and Φ a simply-laced irreducible root

system of rank at least 2 and for each φ ∈ Φ+ let tφ ∈ R be given. Further for each

k ∈ N, let vk be the number of roots of weight k in Φ+ and let l be the weight of the root of

highest weight in Φ+. Then de�ne the sequence (xk)k=1,...,l of integers by reverse recursion

as follows:

xl := 2, xl−k := (2vl−kxl−k+1 + 2vl−k + 1)xl−k+1.

Further assume that Φ+ is ordered in some �xed way by decreasing weight of roots and set

u :=
∏
φ∈Φ+

εφ(tφ) ∈ U+(Φ, R).
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Then

(tφ|φ ∈ Φ+) ⊂ ε(u, x1)

holds.

Proof. We will show by backwards induction on k ∈ {1, . . . , l}, that the following claim

holds:

Claim 4.4.4.1. Let

u :=
∏
φ∈Φ+

εφ(tφ) ∈ U+(Φ, R).

be given such that tφ = 0 holds for all φ ∈ Φ+ with wt(φ) < k. Then

(tφ|φ ∈ Φ+) ⊂ ε(u, xk)

holds.

Clearly, this claim is equivalent to the claim of the lemma. First, for the case k = l

let χ ∈ Φ be the root of positive highest weight in Φ. Then u = εχ(tχ) holds and thus the

claim follows from the non Bn-case of the proof of Lemma 3.3.3.

So assume now that k ≥ 1 is smaller than l. For each root φ ∈ Φ+ with tφ 6= 0 and

the weight of φ being k, there is a positive, simple root αφ such that αφ + φ is also a root

in Φ. As k is the smallest possible weight for the roots in u, we can reorder the terms of

u in such a way that

u =

 ∏
ψ∈Φ+−{φ},wt(ψ)≥k

εψ(t′ψ)

 · εφ(tφ) = u′ · εφ(tφ).

holds for other t′ψ ∈ R for ψ ∈ Φ+ − {φ} with wt(ψ) ≥ k. Then, we obtain

(u, εαφ(1)) ∼ (εφ(tφ), εαφ(1)) · (εαφ(1), u′−1)

= εφ+αφ(tφ) · (εαφ(1), u′−1) := uφ.

First, note that the weight of all roots appearing in the root elements in uφ can be assumed

to be greater or equal to k+1 and that we may assume that none of the roots appearing in

the root elements in (εαφ(1), u′−1) are φ+αφ. Thus by applying the induction hypotheses,

we obtain in particular that

(tφ) ⊂ ε(uφ, xk+1) ⊂ ε(u, 2xk+1).

This implies further that εφ(tφ) is an element of Bu(2xk+1). As we can do this for all roots

φ of weight k appearing in u, we obtain that after multiplication from the right with the
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elements εφ(tφ) in appropriate order that

u′′ :=
∏

ψ∈Φ+,wt(ψ)≥k+1

εψ(tψ)

is an element of Bu(2vkxk+1 + 1). But then we can also apply the induction hypothesis to

u′′ and thus we obtain that

(tψ|ψ ∈ Φ+,wt(ψ) ≥ k + 1) ⊂ ε(u′′, xk+1) ⊂ ε(u, (2vkxk+1 + 1)xk+1).

Thus in combination with the fact that (tφ) ⊂ ε(u, 2xk+1) holds for all roots φ ∈ Φ+ of

weight k, we obtain

(tφ|φ ∈ Φ+) ⊂ ε(u, (2vkxk+1 + 2vk + 1)xk+1)

However, the integer xk is de�ned as xk = (2vkxk+1 + 2vk + 1)xk+1 so this �nishes the

induction step and the proof.

Next, observe that:

Lemma 4.4.5. Let R be a commutative ring with 1 and let

u :=
∏
φ∈E+

6

εφ(tφ) ∈ U+(E6, R).

be given. Then (tφ|φ ∈ E+
6 ) ⊂ ε(u, 60210

) holds.

Proof. According to Lemma 4.4.4 it su�ces to show x1 ≤ 60210
to show the claim of the

lemma. To this end, observe that l = 11 and vk ≤ 6 holds for all k ∈ N for Φ = E6, as

can be seen for example from the Hasse-diagram of E6 in the proof of Lemma 4.4.4 in

Appendix C. But the recursion xk = (2vkxk+1 + 2vk + 1)xk+1 implies then further that

xk = (2vkxk+1 + 2vk + 1)xk+1 ≤ 5vkxk+1 · xk+1 = 30x2
k+1.

Then considering that xl = 2, one can show by induction that xk ≤ 302l−k−1 · x2(l−k)

l =

602l−k and hence x1 ≤ 60210
.

We will prove Proposition 4.4.1 now:

Proof. Let Q be the fraction �eld of R. For ψ a positive, simple root in E6, set Tψ(R) =

Yψ ∪ {1} for the Yψ as in Proposition 4.3.4. Then according to Lemma 4.4.2, Proposi-

tion 4.3.4 and Lemma 4.3.5, there are elements X(i)
ψ ∈ Tψ(R) for positive simple root
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ψ ∈ E6 and i = 1, . . . , 6 as well as b ∈ B+(E6, R) such that

A = b ·
6∏
i=1

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε

holds. Setting further Y (i)
ψ := (X

(i)
ψ )−1 for ψ positive and simple and i = 1, . . . , 6, this

implies

(A, εα+2β+3γ+2δ+ε+2φ(1))

= (b
6∏
i=1

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε , εα+2β+3γ+2δ+ε+2φ(1))

∼ (X(3)
α X(3)

ε

6∏
i=4

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε , εα+2β+3γ+2δ+ε+2φ(1))

· (εα+2β+3γ+2δ+ε+2φ(1), (((b
2∏
i=1

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε ) ·X(3)
φ X

(3)
β X

(3)
δ X(3)

γ )−1)

∼ (X(3)
α X(3)

ε

6∏
i=4

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε , εα+2β+3γ+2δ+ε+2φ(1))

·

[
((Y (3)

γ Y
(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ )b−1, εα+2β+3γ+2δ+ε+2φ(1))

]−1

.

The �rst part of Lemma 4.4.3 states that

s1 = (wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε)

is a minimal expression for its corresponding Weyl-group element w1. But note that, all

X
(i)
ψ are chosen as elements of Tψ(R). So according to Proposition 4.3.4, the element

X(3)
α X(3)

ε

6∏
i=4

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε

is an element of (B(Φ, Q)w′B(Φ, Q))∩G(Φ, R) for some w′ ∈ S(w1). According to the �rst

part of Lemma 4.4.3, the Weyl-group element w1 given by the sequence s1 satis�es w1(χ) =

γ and T (γ) = E+
6 −{α, β, δ, ε, φ, α+β, δ+ ε} =: S. Thus as χ = α+ 2β+ 3γ+ 2δ+ ε+ 2φ

is the positive root of highest weight in E6, by Lemma 4.3.8, the commutator

B1 := (X(3)
α X(3)

ε

6∏
i=4

X
(i)
φ X

(i)
β X

(i)
δ X(i)

γ X(i)
α X(i)

ε , εα+2β+3γ+2δ+ε+2φ(1))
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is an element of
∏

ψ∈S εψ(R). But reordering the terms, we may assume that

B1 ∈ εγ(R)
∏

ψ∈S−{γ}

εψ(R).

Next, consider the following chain of equations

((Y (3)
γ Y

(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ ) · b−1, εα+2β+3γ+2δ+ε+2φ(1))

= ((Y
(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ ) · b−1, εα+2β+3γ+2δ+ε+2φ(1)))Y

(3)
γ

· (Y (3)
γ , εα+2β+3γ+2δ+ε+2φ(1))

= ((Y
(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ ) · b−1, εα+2β+3γ+2δ+ε+2φ(1)))Y

(3)
γ

Then similarly to the previous discussion, one obtains from Lemma 4.4.3 and Proposi-

tion 4.3.4 that

(Y
(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ ) · b−1

is an element of (B(Φ, Q)w′B(Φ, Q)) ∩G(Φ, R) for some

w′ ∈ S(wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ) = S(s2).

According to the second part of Lemma 4.4.3, the Weyl-group element w2 given by the

sequence s2 satis�es w2(χ) = γ. Thus by Lemma 4.3.8, the commutator

B2 := ((Y
(3)
δ Y

(3)
β Y

(3)
φ

3∏
i=2

Y (4−i)
ε Y (4−i)

α Y (4−i)
γ Y

(4−i)
δ Y

(4−i)
β Y

(4−i)
φ ) · b−1, εα+2β+3γ+2δ+ε+2φ(1))

is an element of
∏

ψ∈S εψ(R). But then reordering the terms yields

B2 ∈ εγ(R)
∏

ψ∈S−{γ}

εψ(R).

Hence, we obtain

(B
Y

(3)
γ

2 )−1 ∈ (
∏

ψ∈S−{γ}

εψ(R)Y
(3)
γ )εγ(R)Y

(3)
γ (4.2)

But for each ψ ∈ S − {γ} one of three cases occurs:

1. Neither ψ + γ nor ψ − γ are elements of E6. But as ψ 6= γ, Lemma 4.3.9 implies
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εψ(R)Y
(3)
γ = εψ(R).

2. The term ψ + γ is an element of E6. Then Lemma 4.3.9 implies

εψ(R)Y
(3)
γ = εψ(R)εψ+γ(R).

3. The term ψ − γ is an element of E6. Then Lemma 4.3.9 implies

εψ(R)Y
(3)
γ = εψ(R)εψ−γ(R).

Note, that if ψ ∈ S − {γ} and ψ + γ or ψ − γ is an element of E6, then this implies that

either ψ+γ ∈ (S−{γ}) or ψ−γ ∈ (S−{γ})∪{α+β, β, δ, φ, δ+ε} = E+
6 −{α, γ, ε} =: S ′.

So in any case, one obtains �xing some order of the elements in S ′ that

εψ(R)Y
(3)
γ ∈

∏
ν∈S′

εν(R).

But S ′ is a set of positive roots closed under addition and hence according to Proposi-

tion 2.2.13, the set
∏

ν∈S′ εν(R) is a subgroup. Hence together with (4.2), we obtain

(B
Y

(3)
γ

2 )−1 ∈ (
∏
ψ∈S′

εψ(R))εγ(R)Y
(3)
γ (4.3)

Remembering that

B1 ∈ εγ(R)
∏

ψ∈S−{γ}

εψ(R)

and that S − {γ} is a subset of S ′, we obtain that

B1 ∈ εγ(R)
∏
ψ∈S′

εψ(R). (4.4)

Hence, (4.3) and (4.4) together imply

(A, εα+2β+3γ+2δ+ε+2φ(1)) ∼ B1 · (B
Y

(3)
γ

2 )−1

∈ (εγ(R)
∏
ψ∈S′

εψ(R)) · (
∏
ψ∈S′

εψ(R))εγ(R)Y
(3)
γ

So conjugating with an element of εγ(R) yields that (A, εα+2β+3γ+2δ+ε+2φ(1)) is conjugate

to an element B of

(
∏
ψ∈S′

εψ(R)) ·Gγ(R).

We assume that the set of roots S ′ is ordered by decreasing weight; the order of root

elements associated to roots of the same weight should be �xed, but does not matter. So,
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we can pick elements tψ ∈ R for each ψ ∈ S ′ and a Zγ ∈ Gγ(R) with

B = (
∏
ψ∈S′

εψ(tψ)) · Zγ.

Further, choose a, b, c, d ∈ R such that

Zγ = ψγ

(
a b

c d

)

Next, we will construct various ideals using Lemma 4.4.5, whose sum has the property

desired of I0(A) in the proposition. First, pick a positive, simple root θ in E6, which is

not γ and consider the following commutator:

(B, εθ(1)) ∼ (Zγ, εθ(1)) · (εθ(1), (
∏
ψ∈S′

εψ(tψ))−1).

According to Lemma 4.3.9, one obtains that

(Zγ, εθ(1))

is an element of U+(E6, R). But (εθ(1), (
∏

ψ∈S′ εψ(tψ))−1) is clearly an element of U+(E6, R)

as well. Thus the commutator (B, εθ(1)) is conjugate to an element uθ of the subgroup

U+(E6, R). Hence using Lemma 4.4.5, we can �nd an ideal

Iθ(A) ⊂ ε(uθ, 60210

) ⊂ ε(A, 4 · 60210

)

such that πIθ(A)(uθ) = 1. Next, consider the commutator

(B, εγ+δ(1)) ∼ (Zγ, εγ+δ(1)) · (εγ+δ(1), (
∏
ψ∈S′

εψ(tψ))−1)

According to Lemma 4.3.9, one obtains that

(Zγ, εγ+δ(1)) = εγ+δ(±(a− 1))εδ(±c)

and this is clearly an element of U+(E6, R). But according to Proposition 2.2.13, the

commutator (εγ+δ(1), (
∏

ψ∈S′ εψ(tψ))−1) is an element of∏
ψ∈E+

6 ,wt(ψ)≥3

εψ(R).
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So

(Zγ, εγ+δ(1)) · (εγ+δ(1), (
∏
ψ∈S′

εψ(tψ))−1)

is an element of U+(E6, R) and its terms can be ordered in such a way that the only root

elements εψ(yψ) with wt(ψ) ≤ 2 appearing in it, are εγ+δ(±(a − 1)) and εδ(±c). Thus
the commutator (B, εγ+δ(1)) is conjugate to an element uγ+δ of the subgroup U+(E6, R).

Hence using Lemma 4.4.5, we can �nd an ideal

Iγ+δ(A) ⊂ ε(uγ+δ, 60210

) ⊂ ε(A, 4 · 60210

)

such that πIγ+δ(A)(uγ+δ) = 1 and additionally a − 1, c are elements of Iγ+δ(A) as well.

Similarly, one can �nd an ideal

Iγ+φ(A) ⊂ ε(A, 4 · 60210

)

such that πIγ+φ(A)(uγ+φ) = 1 for an element uγ+φ conjugate to the commutator (B, εγ+φ(1)).

Further, we may reorder the terms in B in such a way that

B = (
∏

ψ∈S′−{φ}

εψ(t′ψ)) · εφ(tφ) · Zγ

holds for other t′ψ ∈ R for ψ ∈ S ′ − {φ}. Then for x ∈ R, consider the commutator

(B, εα+2β+3γ+2δ+ε+φ(x)) = (εφ(tφ) · Zγ, εα+2β+3γ+2δ+ε+φ(x))(
∏
ψ∈S′−{φ} εψ(t′ψ))

· ((
∏

ψ∈S′−{φ}

εψ(t′ψ)), εα+2β+3γ+2δ+ε+φ(x))

= (εφ(tφ) · Zγ, εα+2β+3γ+2δ+ε+φ(x))(
∏
ψ∈S′−{φ} εψ(t′ψ)) · 1

∼ (εφ(tφ) · Zγ, εα+2β+3γ+2δ+ε+φ(x))

= (Zγ, εα+2β+3γ+2δ+ε+φ(x))εφ(tφ) · (εφ(tφ), εα+2β+3γ+2δ+ε+φ(x))

But note that according to Lemma 4.3.9, we obtain

(Zγ, εα+2β+3γ+2δ+ε+φ(x))εφ(tφ) = (εα+2β+3γ+2δ+ε+φ(±x(a− 1))εα+2β+2γ+2δ+ε+φ(±xc))εφ(tφ)

However, we already know that

x(a− 1), xc ∈ Iγ+δ(A) ⊂ ε(A, 4 · 60210

)

and thus (Zγ, εα+2β+3γ+2δ+ε+φ(x))εφ(tφ) is an element of BA(8 · 60210
). Hence

(εφ(tφ), εα+2β+3γ+2δ+ε+φ(x)) = εα+2β+3γ+2δ+ε+2φ(±xtφ)
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and so in particular εφ(xtφ) are elements of BA(4 + 8 · 60210
).

In particular, this implies that

B′ := (
∏

ψ∈S′−{φ}

εwφ(ψ)(±tψ)) · wφZγw−1
φ

= (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ)) · Zγ+φ

is an element of BA(6 + 8 · 60210
) for an appropriately chosen Zγ+φ ∈ Gγ+φ(R). Note that

none of the roots wφ(ψ) are negative for ψ ∈ S ′ − {φ}. Thus (
∏

ψ∈S′−{φ} εwφ(ψ)(±t′ψ)) is

in fact an element of U+(E6, R). Hence according to Propositon 2.2.13, the commutator

(εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1)

is an element of the subgroup
∏

ψ∈Φ+,wt(ψ)≥2 εψ(R) of U+(Φ, R). So in particular,

wγ

εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1

w−1
γ

is also an element of U+(E6, R). Then Lemma 4.3.9 implies that there are u, v ∈ R with

(B′, εφ(1)) ∼ (Zγ+φ, εφ(1)) · (εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1)

= εφ(u)ε−γ(v) · (εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1)

∼ wγεφ(u)ε−γ(v) · (εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1)w−1
γ

= εγ+φ(u)εγ(v) · wγ

εφ(1), (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ))−1

w−1
γ := B′′

So summarizing, the termB′′ is an element of U+(E6, R) and hence according to Lemma 4.4.5,

we can �nd an ideal

J(A) ⊂ ε(B′′, 60210

) ⊂ ε(A, (6 + 8 · 60210

) · 60210

) ⊂ ε(A, 9 · 60211

)

such that πJ(A)((B
′, εφ(1))) = 1. Next, we de�ne the ideal

I0(A) := Iα(A) + Iβ(A) + Iδ(A) + Iε(A) + Iφ(A) + Iγ+δ(A) + Iγ+φ(A) + J(A)

⊂ ε(A, 5 · 4 · 60210

+ 2 · 4 · 60210

+ 9 · 60211

) ⊂ ε(A, 10 · 60211

).
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To �nish the proof, we now have to show that I0(A) has the desired property, that is for

any maximal ideal m containing I0(A), one has

πm(A, εα+2β+3γ+2δ+ε+2φ(1)) = 1

or equivalently that B̄ := πm(B) = 1. To this end, consider the �eld K := R/m. First,

we will show that πm(Zγ) is trivial. Recall that:

Zγ = ψγ

(
a b

c d

)

and observe that according to Lemma 4.3.9, one has

(B, εβ(1)) = ((
∏
ψ∈S′

εψ(tψ)) · Zγ, εβ(1))

∼ (Zγ, εβ(1)) · (εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)

= εβ+γ(±b)εβ(±(d− 1)) · (εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)

∼ εβ(±(d− 1)) · (εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)εβ+γ(±b)

holds. Consider the set

T := S ′ − {β + γ} = E+
6 − {α, γ, ε, β + γ}

of roots. Observe, that if ψ1 is an element of T and ψ2 is an element of S ′ such that

ψ1 + ψ2 is an element of E6, then ψ1 + ψ2 cannot be β + γ, because if it were than either

ψ1 or ψ2 would have to be γ, which contradicts ψ1, ψ2 being elements of S ′. Hence T is an

ideal in the set S ′ and hence according to Proposition 2.2.13, the subgroup
∏

ψ∈T εψ(R) is

a normal subgroup of
∏

ψ∈S′ εψ(R). Thus as εβ(1) is an element of
∏

ψ∈T εψ(R), we obtain

that the commutator (εβ(1), (
∏

ψ∈S′ εψ(tψ))−1) is an element of the subgroup∏
ψ∈T

εψ(R)

of U+(Φ, R) as well. But consequently, the factors of εβ(±(d−1))(εβ(1), (
∏

ψ∈S′ εψ(tψ))−1)

can be rearranged in such a way that none of the roots appearing are β+γ. But remember

that

εβ(±(d− 1))(εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)εβ+γ(±b) (4.5)
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is conjugate to (B, εβ(1)) and hence as m contains Iβ(A), the map πm must map

εβ(±(d− 1))(εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)εβ+γ(±b)

to the identity. This then implies that πm(εβ+γ(±b)) must be trivial as well and hence b

must be an element of m.

But as both εβ(1) and (
∏

ψ∈S′ εψ(tψ))−1 are elements of U+(E6, R), the commutator

(εβ(1), (
∏

ψ∈S′ εψ(tψ))−1) must also be an element of the subgroup∏
ψ∈E+

6 ,wt(ψ)≥2

εψ(R)

according to [41, Chapter 3, p. 22, Corollary 4]. But consequently, the factors of

(εβ(1), (
∏
ψ∈S′

εψ(tψ))−1)εβ+γ(±b) ∈
∏

ψ∈E+
6 ,wt(ψ)≥2

εψ(R)

can be rearranged such that none of the roots appearing are β and thus one obtains, as

πm maps the term in (4.5) to 1, that d− 1 must be an element of m as well.

We have seen before already, that the ideal Iγ+δ(A) contains a− 1 and d and hence to

summarize πm(Zγ) = 1 must hold. Phrased di�erently, we obtain setting t̄ψ := tψ+m ∈ K
for ψ ∈ S ′ that

B̄ =
∏
ψ∈S′

εψ(t̄ψ).

Next, we show by induction on k ∈ N0 that t̄ψ = 0 holds for all ψ ∈ S ′ with wt(ψ) < k.

This implies B̄ = 1, because there is a maximal weight roots can have. So assume that

B̄ is given such that t̄ψ = 0 holds for all ψ ∈ S ′ with wt(ψ) < k. We have to show

that B̄ further has the property that t̄ψ = 0 holds for all ψ ∈ S ′ with wt(ψ) = k. To

this end observe that for each root θ ∈ S ′ with weight k such that θ is not the root of

highest weight in E+
6 , there must be a simple root θ0 such that θ + θ0 is a root in E+

6 .

We distinguish two cases. First, let us assume that θ0 can be chosen to not be γ. Then

reordering the terms in B̄, we can assume that

B̄ =

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

 · εθ(t̄θ)
for certain other t̄′ψ ∈ K. But we know that B̄ commutes with εθ0(1) as Iθ0(A) is a subset

91



of m. Hence

1 = (B̄, εθ0(1)) ∼ (

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

 · εθ(t̄θ), εθ0(1))

= (εθ(t̄θ), εθ0(1)) · (εθ0(1),

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

−1

)

= εθ+θ0(t̄θ) · (εθ0(1),

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

−1

)

This is an element of U+(Φ, K) again. But similar to how we showed that πm(Zγ) = 1,

one can also show using Proposition 2.2.13 that the factors of

(εθ0(1),

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

−1

)

can be rearranged as to not involve the root θ + θ0 and hence one obtains that t̄θ = 0

holds. To summarize, if there is a positive, simple root θ0 6= γ such that θ + θ0 is a root,

then t̄θ = 0 holds. This settles the �rst case. The second case is that such a simple root θ0

cannot be found. But looking again at the Hasse-diagram from the proof of Lemma 4.4.3

in Appendix C, the only positive roots θ in E6 of this form are the roots

φ, α + β, δ + ε, α + β + γ + δ + ε+ φ, α + 2β + 2γ + 2δ + ε+ φ

and the root of highest weight χ. Disregarding χ for the moment, all the other ones of

those roots θ, have one of two properties: either θ + γ + δ or θ + γ + φ is a root in E+
6 .

But we know by construction of I0(A), that B̄ commutes with both εγ+δ(1) and εγ+φ(1).

Further, we can reorder the terms of B̄ again such that

B̄ =

 ∏
ψ∈S′−{θ},wt(ψ)≥k

εψ(t̄′ψ)

 · εθ(t̄θ)
and hence using Proposition 2.2.13 as before we obtain t̄θ = 0 using either that B̄ cen-

tralizes εγ+δ(1) or centralizes εγ+φ(1) depending on the θ in question. So proceeding by

induction, we can assume �nally that

πm(B) = B̄ = εχ(t̄χ).
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Recall the aforementioned element

B′ := (
∏

ψ∈S′−{φ}

εwφ(ψ)(±tψ)) · wφZγw−1
φ

= (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t′ψ)) · Zγ+φ

and observe that t̄ψ = 0 for all ψ 6= χ and πm(Zγ) = 1, implies

πm(B′) = πm((
∏

ψ∈S′−{φ}

εwφ(ψ)(±tψ)) · wφZγw−1
φ )

= (
∏

ψ∈S′−{φ}

εwφ(ψ)(±t̄ψ)) · wφ · 1 · w−1
φ

= εwφ(χ)(±t̄χ)) = εα+2β+3γ+2δ+ε+φ(±t̄χ).

However, the ideal I0(A) contains J(A) and hence πm(B′) commutes with εφ(1) by con-

struction of J(A). Thus

1 = (πm(B′), εφ(1)) = (εα+2β+3γ+2δ+ε+φ(±t̄χ), εφ(1)) = εχ(±t̄χ)

holds and consequently t̄χ = 0 follows. So �nally, we are done with the induction and the

proof of the lemma.

This proposition implies:

Proposition 4.4.6. Let R be a principal ideal domain and A ∈ E6(R). Then there is an

ideal I0(A) in R with

I(A) ⊂ ε(A, 120 · 60211

)

such that V (I(A)) ⊂ Π({A}). Phrased di�erently, for R a principal ideal domain, one

can can pick L(E6) in Theorem 3.1.1 as L(E6) = 120 · 60211
.

Proof. To de�ne the ideal I(A), note �rst that according to Proposition A.0.8, for each

simple root θ ∈ E6, positive and negative, there is an element w(θ) ∈ W (E6) such that

w(θ)(χ) = θ holds for χ the positive root of highest weight in E6. Then consider the ideals

I0

(
w(α)A(w(α))−1

)
, . . . , I0

(
w(φ)A(w(φ))−1

)
, I0

(
w(−α)A(w(−α))−1

)
, . . . , I0

(
w(−φ)A(w(−φ))−1

)
⊂ ε(A, 10 · 60211

)

from Proposition 4.4.1 and set

I(A) :=
∑

θ∈E6, simple

I0

(
w(θ)A(w(θ))−1

)
⊂ ε(A, 120 · 60211

).
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Let m be a maximal ideal, that contains I(A) and de�ne K := R/m. Further let

πm : E6(R)→ E6(K) be the reduction homomorphism and set Ā := πm(A).We will prove

that Ā is a central element of E6(K). The key observation is that Ā commutes with all

elements εθ(1) for θ a simple root in E6: To see this note �rst that w(θ)Ā(w(θ))−1 commutes

with εχ(1), because m contains I0

(
w(θ)A(w(θ))−1

)
. But conjugating, this implies that Ā

commutes with

w(θ)εχ(1)(w(θ))−1 = εw(θ)(χ)(±1) = εθ(±1).

Observe next that K is a �eld. Thus using the Bruhat-decomposition of E6(K) [41,

Chapter 3, p. 26, Theorem 4'], there are w ∈ W (E6), an element b ∈ B(K) and an

element u ∈ U+(E6, K) such that wuw−1 is an element of U−(E6, K) and A = bwu. Let

us �rst assume that w 6= 1. Then according to [41, Appendix, p. 151, (2)Corollary], there

must be a positive simple root θ such that w(θ) is a negative root. However Ā commutes

with εθ(1) and hence

1 = (Ā, εθ(1)) = (bwu, εθ(1)) ∼ (wu, εθ(1)) · (εθ(1), b−1)

= (u, εθ(1))w · (w, εθ(1)) · (εθ(1), b−1)

= (u, εθ(1))w · wεθ(1)w−1εθ(−1) · (εθ(1), b−1)

= [(u, εθ(1)) · εθ(1)]w ·
[
εθ(−1) · (εθ(1), b−1)

]
But consider the �rst factor

[(u, εθ(1)) · εθ(1)]w

=
[
uεθ(1)u−1εθ(−1)εθ(1)

]w
= uw · εθ(1)w(u−1)w = uwεw(θ)(±1)(u−1)w.

and note that by assumption uw is an element of U−(E6, K) and hence the entire �rst

factor is an element of U−(E6, K). But the second factor

[
εθ(−1) · (εθ(1), b−1)

]
is an element of B(K) as all of its factors are. So

[(u, εθ(1)) · εθ(1)]w ·
[
εθ(−1) · (εθ(1), b−1)

]
is the trivial element in U−(E6, K) · B(K) and hence the uniqueness of the Big-cell-

decomposition [41, Chapter 5, p. 40, Theorem 7] implies

1 = [(u, εθ(1)) · εθ(1)] =
[
εθ(−1) · (εθ(1), b−1)

]
.
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But this implies

1 = εθ(−1) · (εθ(1), b−1) = εθ(−1)εθ(1)b−1εθ(−1)b

= b−1εθ(−1)b ∼ εθ(−1)

and hence εθ(−1) is the trivial element, which is obviously impossible. This contradiction

yields w = 1 and hence Ā is an element of the upper Borel subgroup B+(E6, K). But

using the Bruhat-decomposition for the lower Borel-subgroup B−(E6, K), one can show

in the same fashion that Ā is also an element of B−(E6, K). However

B+(E6, K)∩B−(E6, K) = {hα(sα)hβ(sβ)hγ(sγ)hδ(sδ)hε(sε)hφ(sφ)| sα, sβ, sγ, sδ, sε, sφ ∈ K−{0}}.

holds and so we can pick sα, sβ, sγ, sδ, sε, sφ ∈ K − {0} with

Ā = hα(sα)hβ(sβ)hγ(sγ)hδ(sδ)hε(sε)hφ(sφ).

Next, observe that Ā commutes with εθ(1) for all positive, simple roots θ. Then using

induction on the height of a root θ ∈ E+
6 and the commutator formulas in Lemma 2.2.4,

one can show that Ā also commutes with εα+2β+3γ+2δ+ε+2φ(1). But εα+2β+3γ+2δ+ε+2φ(1)

commutes with all factors in Ā except possibly hφ(sφ) and hence the following holds:

1 = (Ā, εα+2β+3γ+2δ+ε+2φ(1)) ∼ (hφ(sφ), εα+2β+3γ+2δ+ε+2φ(1))

= εα+2β+3γ+2δ+ε+2φ(s
〈α+2β+3γ+2δ+ε+2φ,φ〉
φ − 1)

= εα+2β+3γ+2δ+ε+2φ(sφ − 1).

But this implies that sφ = 1. Further Ā commutes with εφ(1). But all factors of Ā

commute with εφ(1) except possibly hγ(sγ). This implies

1 = (Ā, εφ(1)) = (hγ(sγ), εφ(1)) = εφ(s〈φ,γ〉γ − 1) = εφ(s−1
γ − 1).

But this in turn implies that sγ = 1. But if both sφ and sγ are 1, then observe that all

factors in

Ā = hα(sα)hβ(sβ)hδ(sδ)hε(sε)

commute with the root subgroups εφ(K) and ε−φ(K) and so Ā centralizes those root

subgroups.

Next, observe that the only factors of Ā that might not commute with εγ(K) are
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hβ(sβ) and hδ(sδ). This yields for x ∈ K that

(Ā, εγ(x)) = (hβ(sβ)hδ(sδ), εγ(x))

= εγ(xs
〈γ,δ〉
δ s

−〈γ,β〉
β − 1)

= εγ(x(s−1
δ sβ − 1))

But observe that Ā commutes with εγ(1) and hence setting x = 1, yields s−1
δ sβ = 1.

This yields (Ā, εγ(x)) = 1 for all x ∈ K. Hence Ā centralizes the root subgroup εγ(K)

and similarly Ā centralizes the root subgroup ε−γ(K). But analyzing the commutators

(Ā, εθ(x)) for θ ∈ {±α,±β,±δ,±ε} and x ∈ R in the same manner yields that Ā also

centralizes the root groups εθ(K).

To summarize: For each simple root θ ∈ E6 the element Ā centralizes the correspond-

ing root subgroup εψ(K). But the group E6(K) is generated by

{εθ(x)| x ∈ K, θ ∈ E6 simple}

according to [3, Corollary 2.4] and hence Ā is a central element of E6(K). This �nishes

the proof.

4.5 Explicit bounds for root elements of G2(R)

Remember that the positive roots in G2 are α, β, α + β, 2α + β, 3α + β and 3α + 2β for

α, β simple, positive roots in G2 with α short, β long. Also note that the roots 3α+β and

β span a root subsystem of G2 isomorphic to A2. We will use the Bruhat decomposition

Proposition 4.3.4 from Section 4.3. First, we need the longest element of the Weyl group:

Lemma 4.5.1. The longest element in the Weyl group W (G2) with respect to the funda-

mental re�ections F := {wα, wβ} is (wαwβ)3.

Proof. As mentioned in the proof of Lemma 4.4.2, it su�ces to show that all roots in

G+
2 get mapped by (wαwβ)3 to negative roots and hence to show that (wαwβ)3(α) and

(wαwβ)3(β) are negative roots. But observe that

wαwβ(α) = wα(α + β) = 2α + β and wαwβ(β) = −wα(β) = −(3α + β).

This then implies

(wαwβ)3(α) = (wαwβ)2(2α + β) = wαwβ(2 · (2α + β)− 3α− β)

= wαwβ(α + β) = 2α + β − 3α− β = −α
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and

(wαwβ)3(β) = −(wαwβ)2(3α + β) = −wαwβ(3 · (2α + β)− 3α− β)

= −wαwβ(3α + 2β) = −(3 · (2α + β)− 2 · (3α− β)) = −β

and �nishes the proof.

Next, we prove:

Proposition 4.5.2. Let R be a principal ideal domain and A ∈ G2(R). Then there is an

ideal I0(A) ⊂ εl(A, 2343808) such that for each maximal ideal m in R with I0(A) ⊂ m,

the equation πm ((A, ε3α+2β(1))) = 1 holds.

The proof is very long, so we put parts of it in technical lemmas.

Lemma 4.5.3. Let R be a commutative ring with 1, A ∈ G2(R) and let a, b ∈ R be given

such that there is an M ∈ N with

‖εα(±a)ε2α+β(±a2)ε3α+β(±b)‖A ≤M.

Then

(2b) ⊂ εl(A, 18M)

holds.

Proof. First, observe for x ∈ R that

BA(2M) 3(εα(±a)ε2α+β(±a2)ε3α+β(±b), ε2α+β(x))

= (εα(±a), ε2α+β(x)) = ε3α+β(±3ax)

and hence (3a) ⊂ εl(A, 2M).

Second, observe for x ∈ R that

BA(2M) 3 (εα(±a)ε2α+β(±a2)ε3α+β(±b), εα+β(x))

= (εα(±a)ε2α+β(±a2), εα+β(x))

∼ (ε2α+β(±a2), εα+β(x)) · (εα+β(x), εα(±a))

= ε3α+2β(±3a2x)ε2α+β(±2ax)ε3α+β(±3a2x)ε3α+2β(±3ax2)

= ε3α+2β(±3a2x± 3ax2)ε3α+β(±3a2x)ε2α+β(±2ax)

But from (3a) ⊂ εl(A, 2M), we obtain

‖ε3α+2β(±3a2x± 3ax2)ε3α+β(±3a2x)‖A ≤ 4M
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and hence ‖ε2α+β(±2ax)‖A ≤ 6M holds for all x ∈ R. This implies (2a) ⊂ ε(A,α, 6M).

Third, consider

(εα(±a)ε2α+β(±a2)ε3α+β(±b))2 = εα(±2a)ε2α+β(±2a2)ε3α+β(±2b± 3a3)

Observe that ‖εα(2a)‖A ≤ 6M . Hence ‖ε2α+β(±2a2)ε3α+β(±2b± 3a3)‖A ≤ 8M holds. So

considering the commutator

BA(16M) 3 (ε2α+β(±2a2)ε3α+β(±2b± 3a3), εβ(x)) = ε3α+2β(x(±2b± 3a3))

and remembering ‖ε3α+2β(3xa3)‖A ≤ 2M implies (2b) ⊂ εl(A, 18M). This �nishes the

proof of the lemma.

Next, we will prove the following lemma:

Lemma 4.5.4. Let R be a commutative ring with 1, A ∈ G2(R) and let a, b ∈ R be given

such that there is an M ∈ N with

‖εα(±a)ε2α+β(±a2)ε3α+β(±b)‖A ≤M.

Then

(3b2) ⊂ εl(A, 192M).

Proof. First, consider the commutator

(εα(±a)ε2α+β(±a2)ε3α+β(±b), ε−α(1))

∼ (ε2α+β(±a2)ε3α+β(±b), ε−α(1)) · (ε−α(1), εα(±a))

= (ε3α+β(±b), ε−α(1))ε2α+β(±a2) · (ε2α+β(±a2), ε−α(1)) · (ε−α(1), εα(±a))

= (ε2α+β(±b)εα+β(±b)εβ(±b)ε3α+2β(±b2))ε2α+β(±a2)

· εα+β(±2a2)εβ(±3a2)ε3α+2β(±3a4) · (ε−α(1), εα(±a))

=
(
ε2α+β(±b)εα+β(±b)ε3α+2β(±3a2b)εβ(±b)ε3α+2β(±b2)

)
· εα+β(±2a2)εβ(±3a2)ε3α+2β(±3a4) · (ε−α(1), εα(±a))

= ε2α+β(±b)εα+β(±b± 2a2)ε3α+2β(±3a2b± 3a4 ± b2)εβ(±b± 3a2) · (ε−α(1), εα(±a))

∼ (ε−α(1), εα(±a)) · ε2α+β(±b)εα+β(±b± 2a2)ε3α+2β(±3a2b± 3a4 ± b2)εβ(±b± 3a2) =: B

But note that all factors of B besides ε2α+β(±b)εα+β(±b± 2a2) and (ε−α(1), εα(±a))

98



commute with ε−α(1) and thus we obtain

(B, ε−α(1)) =
(
(ε−α(1), εα(±a)) · ε2α+β(±b)εα+β(±b± 2a2), ε−α(1)

)
∼ (ε2α+β(±b)εα+β(±b), ε−α(1)) ·

(
ε−α(1), (ε−α(1), εα(±a))−1

)
= (εα+β(±b± 2a2), ε−α(1))ε2α+β(±b)(ε2α+β(±b), ε−α(1))

·
(
ε−α(1), (ε−α(1), εα(±a))−1

)
= εβ(3(±b± 2a2))ε2α+β(±b)εα+β(±2b)εβ(±3b)ε3α+2β(±3b2)

·
(
ε−α(1), (ε−α(1), εα(±a))−1

)
= εβ(3(±b± 2a2))εα+β(±2b)εβ(±3b)ε3α+2β(±3b2)

·
(
ε−α(1), (ε−α(1), εα(±a))−1

)
= εβ

(
3(±b± 2a2)± 3b

)
εα+β(±2b)ε3α+2β(±3b2) ·

(
ε−α(1), (ε−α(1), εα(±a))−1

)
This is an element of BA(4M). Further, dependent on the respective signs the term

εβ(3(±b±2a2)±3b) is εβ(±6b±6a2) or εβ(±6a2). But ‖εβ(±6b)‖A ≤ 18M holds according

to Lemma 4.5.3 and we have seen (3a) ⊂ εl(A, 2M) in the proof of Lemma 4.5.3. Thus

εβ(3(±b± 2a2)± 3b) is an element of BA(20M). Hence

C := εα+β(±2b)ε3α+2β(±3b2)·(ε−α(1), (ε−α(1), εα(±a))−1) ∈ BA(20M+4M) = BA(24M).

Note, that (ε−α(1), (ε−α(1), εα(±a))−1) commutes with ε−3α−2β(1) according to Lemma 4.3.9(1)

and hence

(C, ε−3α−2β(1)) =
(
εα+β(±2b)ε3α+2β(±3b2), ε−3α−2β(1)

)
∼
(
ε3α+2β(±3b2), ε−3α−2β(1)

)
· (ε−3α−2β(1), εα+β(±2b))

=
(
ε3α+2β(±3b2), ε−3α−2β(1)

)
· ε−2α−β(±2b)ε−α(±4b2)εβ(±8b3)ε−3α−β(±8b3)

=: D.

Observe that ‖D‖A ≤ 48M. Note next, that all factors in this product besides

(
ε3α+2β(±3b2), ε−3α−2β(1)

)
commute with εβ(1) and hence

BA(96M) 3 (D, εβ(1)) = ((ε3α+2β(±3b2), ε−3α−2β(1)), εβ(1))

= ε−3α−β(±3b2)εβ
(
(±3b2)± (±3b2)2

)
.
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The last equation follows from Lemma 4.3.9(3). Lastly, consider for x ∈ R the commutator

BA(192M) 3
(
ε−3α−β(±3b2)εβ

(
(±3b2) + (±3b2)2

)
, ε3α+2β(x)

)
= εβ(±3b2x).

This implies as x ∈ R is arbitrary that

(3b2) ⊂ ε(A, 3α + 2β, 4 · 48M) = εl(A, 192M)

and �nishes the proof of the lemma.

These two lemmata imply the following proposition:

Proposition 4.5.5. Let R be a commutative ring with 1, A ∈ G2(R) and let a, b ∈ R be

given such that there is an M ∈ N with

‖εα(±a)ε2α+β(±a2)ε3α+β(±b)‖A ≤M.

Then

(b2) ⊂ εl(A, 210M)

Proof. Lemma 4.5.3 implies

(2b2) ⊂ (2b) ⊂ εl(A, 18M)

and Lemma 4.5.4 implies

(3b2) ⊂ εl(A, 192M).

So we obtain as b2 = 3b2 − 2b2 that

(b2) ⊂ εl(A, 18M + 192M) = εl(A, 210M).

We further need the following lemma:

Lemma 4.5.6. Let R be a principal ideal domain, x ∈ R and let

A = ψβ

(
a b

c d

)
∈ Gβ(R)

be given. Then

(A, εα+β(x)) = εα+β(±x(a− 1)) · ε2α+β(±x2c(a− 1))

· εα(±xc) · ε2α+β(±cx2) · ε3α+β(±x3c2(a− 1)± c2x3)

· ε3α+2β(±x3c(a− 1)2 ± cx3 ± cx3(a− 1))
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and

(A, ε−α(x)) = ε−α(±x(a− 1)) · ε−2α−β(±cx2(a− 1))

· ε−α−β(±cx) · ε−2α−β(±x2c) · ε−3α−β(±cx3(a− 1)2 ± x3c± x3c(a− 1))

· ε−3α−2β(±x3c2 ± c2x3(a− 1))

hold.

Proof. For the �rst claim, we distinguish the cases c 6= 0 and c = 0. For the �rst case,

note that we can write

A = εβ(c−1(a− 1))ε−β(c)εβ(c−1(d− 1))

in G2(Q) with Q the fraction �eld of R. Then the following chain of equations holds:

(A, εα+β(x)) =
(
εβ(c−1(a− 1))ε−β(c)εβ(c−1(d− 1)), εα+β(x)

)
=
(
ε−β(c)εβ(c−1(d− 1)), εα+β(x)

)εβ(c−1(a−1))

= (ε−β(c), εα+β(x))εβ(c−1(a−1))

=
(
εα(±xc)ε2α+β(±cx2)ε3α+2β(±cx3)ε3α+β(±c2x3)

)εβ(c−1(a−1))

=
(
εα(±xc)εβ(c−1(a−1))

)
ε2α+β(±cx2)ε3α+2β(±cx3)

(
ε3α+β(±c2x3)εβ(c−1(a−1))

)
= εα+β(±x(a− 1))ε2α+β(±x2c(a− 1))ε3α+β(±x3c2(a− 1))

· ε3α+2β(±x3c(a− 1)2)εα(±xc)

· ε2α+β(±cx2)ε3α+2β(±cx3)ε3α+β(±c2x3)ε3α+2β(±cx3(a− 1))

= εα+β(±x(a− 1)) · ε2α+β(±x2c(a− 1))

· εα(±xc) · ε2α+β(±cx2) · ε3α+β(±x3c2(a− 1)± c2x3)

· ε3α+2β(±x3c(a− 1)2 ± cx3 ± cx3(a− 1))

This �nishes the case c 6= 0. If c = 0 hols, then A = hβ(a)εβ(a−1b) and hence

(A, εα+β(x)) =
(
hβ(a)εβ(a−1b), εα+β(x)

)
= (hβ(a), εα+β(x)) = εα+β(x(a− 1))

holds. This �nishes the proof of the �rst claim. The proof for the second claim works the

same way, so we omit it.

This enables us to prove Proposition 4.5.2:

Proof. Let Q be the fraction �eld of R. Set Tα(R) = Yα ∪ {1} and Tβ(R) = Yβ ∪ {1} for
Yα, Yβ as in Proposition 4.3.4. The �rst step in proving this is to note that according to
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Proposition 4.3.4 and Lemma 4.5.1, we can �nd X(1)
α , X

(2)
α , X

(3)
α ∈ Tα(R), Y (1)

β , Y
(2)
β , Y

(3)
β ∈

Tβ(R) as well as an element b ∈ B+(G2, R) such that

A = bX(1)
α Y

(1)
β X(2)

α Y
(2)
β X(3)

α Y
(3)
β .

Then observe:

(A, ε3α+2β(1)) =
(
bX(1)

α Y
(1)
β X(2)

α Y
(2)
β X(3)

α Y
(3)
β , ε3α+2β(1)

)
∼
(
Y

(2)
β X(3)

α Y
(3)
β , ε3α+2β(1)

)
·
(
ε3α+2β(1), (X(2)

α )−1(Y
(1)
β )−1(X(1)

α )−1b−1
)

=
[
(X(3)

α Y
(3)
β , ε3α+2β(t))Y

(2)
β

(
Y

(2)
β , ε3α+2β(1)

)]
·
[
((X(2)

α )−1(Y
(1)
β )−1(X(1)

α )−1b−1, ε3α+2β(1))
]−1

But examine the various factors: First, X(i)
α ∈ Tα(R), Y (i)

β ∈ Tβ(R) holds for all i = 1, 2, 3

and (wα, wβ) is a minimal expression for wαwβ with respect to the fundamental re�ections.

Thus according to Proposition 4.3.4, X(3)
α Y

(3)
β is an element of (B(G2, Q)wB(G2, Q) ∩

G2(R) for w ∈ S(wαwβ). But note wαwβ(3α + 2β) = β is a positive root and so

Lemma 4.3.8 implies together with T (β) = {β, α + β, 2α + β, 3α + β, 3α + 2β} that

(X(3)
α Y

(3)
β , ε3α+2β(t))Y

(2)
β ∈ (

∏
ψ∈T (β)

(εψ(R))Y
(2)
β

= (ε3α+2β(R)ε3α+β(R)ε2α+β(R)εα+β(R))Y
(2)
β εβ(R)Y

(2)
β

⊂ (ε3α+2β(R)ε3α+β(R)ε2α+β(R)εα+β(R)εα(R))Gβ(R).

The last inclusion follows from the second part of Lemma 4.3.9. Second, Lemma 4.3.9(3)

also implies (Y
(2)
β , ε3α+2β(1)) ∈ ε3α+2β(R) · ε3α+β(R).

Next, (wα, wβ, wα) is a minimal expression for wαwβwα with respect to fundamental

re�ections. Thus Proposition 4.3.4 implies that (X
(2)
α )−1(Y

(1)
β )−1(X

(1)
α )−1b−1 is an element

of (B(G2, Q)wB(G2, Q)) ∩ G2(R) for some w ∈ S(wα, wβ, wα). Further wαwβwα(3α +

2β) = β is a positive root. Thus Lemma 4.3.8 implies that

((X(2)
α )−1(Y

(1)
β )−1(X(1)

α )−1b−1, ε3α+2β(1)) ∈
∏

ψ∈T (β)

εψ(R) = ε3α+2β(R)ε3α+β(R)ε2α+β(R)εα+β(R).

All of this is to say, that reordering the terms of[
(X(3)

α Y
(3)
β , ε3α+2β(t))Y

(2)
β

(
Y

(2)
β , ε3α+2β(1)

)]
·
[
((X(2)

α )−1(Y
(1)
β )−1(X(1)

α )−1b−1, ε3α+2β(1))
]−1

,
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we obtain that (A, ε3α+2β(1)) is conjugate to an element B of

ε3α+2β(R)ε3α+β(R)ε2α+β(R)εα+β(R)εα(R)Gβ(R).

Hence, we can �nd a, b, c, d, e ∈ R and an element

Zβ = ψβ

(
q r

s t

)
∈ Gβ(R)

such that

B = ε3α+2β(a)ε3α+β(b)ε2α+β(c)εα+β(d)εα(e)Zβ.

The remaining proof of the proposition proceeds in four steps: First, we will show that

(e3) ⊂ εl(A, 32) and (b2) ⊂ εl(A, 45360).

Then second, we show that applying the calculations of the �rst step to Bwβ implies

(d3) ⊂ εl(A, 32) and ((±a± 3d2e)2) ⊂ εl(A, 45360).

Third, we prove that

(
[
±s(q − 1)2 ± s± (q − 1)s± 3c± 3e

]2
) ⊂ εl(A, 6720) and (64c2) ⊂ εl(A, 2246272).

Then fourth, we construct an ideal I0(A) with the desired properties.

For the �rst step, note that ‖B‖A ≤ 2. Next, observe that for x ∈ R, we obtain from

the third item of Lemma 4.3.9(3) that

(B, ε3α+β(x)) ∼ (Zβ, ε3α+β(x)) = ε3α+β(x(t− 1))ε3α+2β(xr).

Note that x ∈ R is arbitrary, so we obtain by commuting ε3α+β(x(t − 1))ε3α+2β(xr)

with εβ(1) that

(1− t) ⊂ εl(A, 8).

Similarly, we obtain by commuting ε3α+β(x(t−1))ε3α+2β(xr) with ε−β(1) and conjugating

the resulting term ε3α+β(−xr) that

(r) ⊂ εl(A, 8).

Similarly, one obtains using for x ∈ R the commutator (B, ε3α+2β(x)) that (1−q), (s) ⊂
εl(A, 8).
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Next, consider the commutator

(B, εβ(1)) ∼ (ε3α+β(b)εα(e)Zβ, εβ(1))

∼ (Zβ, εβ(1)) · [(ε3α+β(−b)εα(−e), εβ(1))]−1

= (Zβ, εβ(1)) · [(εα(−e), εβ(1))ε3α+β(−b)(ε3α+β(−b), εβ(1))]−1

= (Zβ, εβ(1)) · [ε3α+2β(±e3)ε3α+β(±e3)ε2α+β(±e2)εα+β(±e)ε3α+2β(−b)]−1

∼ εα+β(±e)ε2α+β(±e2)ε3α+β(±e3)ε3α+2β(b± e3)(Zβ, εβ(1)) =: C1 ∈ BA(4).

Next, we consider the commutator

(C1, εβ(1)) =
(
εα+β(±e)ε2α+β(±e2)ε3α+β(±e3)ε3α+2β(b± e3)(Zβ, εβ(1)), εβ(1)

)
∼
(
ε3α+β(±e3)(Zβ, εβ(1)), εβ(1)

)
∼ ((Zβ, εβ(1)), εβ(1)) · (εβ(1), ε3α+β(±e3))

= ((Zβ, εβ(1)), εβ(1)) · ε3α+2β(±e3) =: C2 ∈ BA(8).

Next, for x ∈ R consider the commutator

(C2, ε−3α−β(x)) ∼ (ε3α+2β(±e3), ε−3α−β(x)) · (ε−3α−β(x), (Zβ, εβ(1)), εβ(1))−1)

= εβ(±xe3) · (ε−3α−β(x), ((Zβ, εβ(1)), εβ(1))−1)

Note that

((Zβ, εβ(1)), εβ(1))−1 = (ψβ

(
1− qs (q − 1)(q + 1) + qs

−s2 1 + s(q + s)

)
, εβ(1))−1

= ψβ

(
1 + (1− qs)s2 (1− (1− qs))(1 + (1− qs))− s2(1− qs)

−s4 1− s2(1− qs− s2)

)−1

= ψβ

(
1− s2(1− qs− s2) −s(q(2− qs) + s(1− qs))

s4 1 + (1− qs)s2

)

and consequently, we obtain from Lemma 4.3.9(3) that

(ε−3α−β(x), ((Zβ, εβ(1)), εβ(1))−1) = ε−3α−β(−xs2(1− qs− s2))ε−3α−2β(−xs4).

But we already know that

(s) ⊂ εl(A, 8)
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and hence we obtain that

‖(ε−3α−β(x), ((Zβ, εβ(1)), εβ(1))−1)‖A = ‖ε−3α−β(−xs2(1− qs− s2))ε−3α−2β(−xs4)‖A
≤ 2 ∗ 8 = 16.

This in turn implies that

‖εβ(xe3)‖A ≤ 2‖C2‖A + ‖(ε−3α−β(x), ((Zβ, εβ(1)), εβ(1))−1)‖A ≤ 16 + 16 = 32.

So, we obtain

(e3) ⊂ εl(A, 32).

This proves the �rst statement of the �rst step.

For the second statement of the �rst step, observe �rst that ‖C1‖A ≤ 4 and

‖ε3α+β(±e3)ε3α+2β(±e3)‖A ≤ 64. This implies

C3 := εα+β(±e)ε2α+β(±e2)ε3α+2β(b)(Zβ, εβ(1)) ∈ BA(68).

Hence we obtain

BA(136) 3 (C3, ε−3α−β(1)) ∼((Zβ, εβ(1)), ε−3α−β(1))

· (ε−3α−β(1), εα+β(±e)ε2α+β(±e2)ε3α+2β(−b)).

But similar to the argument showing ‖(ε−3α−β(x), ((Zβ, εβ(1)), εβ(1)))‖A ≤ 16, we obtain

‖((Zβ, εβ(1)), ε−3α−β(1))‖A ≤ 16. Thus

BA(152) 3 (εα+β(±e)ε2α+β(±e2)ε3α+2β(−b), ε−3α−β(1))

∼ (ε3α+2β(−b), ε−3α−β(1)) · (ε−3α−β(1), εα+β(±e)ε2α+β(±e2))

= εβ(−b)[(ε2α+β(±e2), ε−3α−β(1))εα+β(±e) · (εα+β(±e), ε−3α−β(1))]−1

= εβ(−b)[(ε−α(±e2)εα+β(±e4)ε3α+2β(±e8)εβ(±e8))]εα+β(±e)

= εβ(−b)ε−α(±e2)εα+β(±e)εα+β(±e4)ε3α+2β(±e8)εβ(±e8)

= εβ(−b)ε−α(±e2)εβ(±3e3)εα+β(±e4)ε3α+2β(±e8)εβ(±e8)

= εβ(−b)ε−α(±e2)εα+β(±e4)ε3α+2β(±e8)εβ((±e5 ± 3)e3)

Note further that (e3) ⊂ εl(A, 32) implies

‖ε3α+2β(±e8)εβ((±e5 ± 3)e3)‖A ≤ 64.
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This implies that

BA(216) = BA(64 + 152) 3(εβ(−b)ε−α(±e2)εα+β(±e4))wα

= ε3α+β(±b)εα(±e2)ε2α+β(±e4) =: C4.

But applying Proposition 4.5.5 to C4 implies

(b2) ⊂ εl(A, 210 · 216) = εl(A, 45360).

This �nishes the �rst step.

Also note that applying Lemma 4.5.3 to C4 implies

(2b) ⊂ εl(A, 18 ∗ 216) = εl(A, 3888). (4.6)

For the second step, observe �rst that

Bwβ = ε3α+β(±a)ε3α+2β(±b)ε2α+β(±c)εα(±d)εα+β(±e)Zwβ
β

= ε3α+2β(±b± 3de2)ε3α+β(±a± 3d2e)ε2α+β(±c± 2de)εα+β(±e)εα(±d)Z
wβ
β .

Note, that the �rst step does not use any particular properties arising from the de�nition

of B beyond the fact that it is an element of

ε3α+2β(R)ε3α+β(R)ε2α+β(R)εα+β(R)εα(R)Gβ(R).

But this is also the case for Bwβ and hence we obtain using the same calculations that

(d3) ⊂ εl(A, 32)

and

((±a± 3d2e)2) ⊂ εl(A, 45360).

This �nishes the second step.

For the third step, we split the argument into two parts again: First, we will show

(
[
±s(q − 1)2 ± s± (q − 1)s± 3c± 3e

]2
) ⊂ εl(A, 6720).

and secondly, we will show

(64c2) ⊂ εl(A, 2246272).
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For the �rst part, consider the commutator

(B, εα+β(1)) ∼ (ε2α+β(c)εα(e)Zβ, εα+β(1))

∼ (Zβ, εα+β(1)) · [(εα(−e)ε2α+β(−c), εα+β(1))]−1

= (Zβ, εα+β(1)) · [(ε2α+β(−c), εα+β(1))εα(−e)(εα(−e), εα+β(1))]−1

= (Zβ, εα+β(1)) · [ε3α+2β(±3c)εα(−e)ε2α+β(±2e)ε3α+β(±3e2)ε3α+2β(±3e)]−1

= (Zβ, εα+β(1)) · ε3α+2β(±3c± 3e)ε3α+β(±3e2)ε2α+β(±2e) =: D1

Next, note that, Lemma 4.5.6 implies

(Zβ, εα+β(1)) = εα+β(±(q − 1)) · ε2α+β(±s(q − 1))

· εα(±s) · ε2α+β(±s) · ε3α+β(±s2(q − 1)± s2)

· ε3α+2β(±s(q − 1)2 ± s± s(q − 1))

Hence D1 looks as follows

D1 = (Zβ, εα+β(1)) · ε3α+2β(±3c± 3e)ε3α+β(±3e2)ε2α+β(±2e)

= εα+β(±(q − 1)) · ε2α+β(±s(q − 1))

· εα(±s) · ε2α+β(±s) · ε3α+β(±s2(q − 1)± s2)

· ε3α+2β(±s(q − 1)2 ± s± s(q − 1))

· ε3α+2β(±3c± 3e)ε3α+β(±3e2)ε2α+β(±2e)

= εα+β(±(q − 1))ε3α+2β(±s(q − 1)2 ± s± s(q − 1)± 3c± 3e)

· ε2α+β(±s(q − 1))εα(±s)

· ε2α+β(±s) · ε3α+β(±s2(q − 1)± s2)

· ε3α+β(±3e2)ε2α+β(±2e)

Note that all factors of D1 besides εα+β(±(q − 1)) and

ε3α+2β

(
±s(q − 1)2 ± s± s(q − 1)± 3c± 3e

)

107



commute with ε−β(1) and that ‖D1‖A ≤ 4. Thus

(D1, ε−β(1))

=
(
εα+β(±(q − 1))ε3α+2β

(
±s(q − 1)2 ± s± s(q − 1)± 3c± 3e

)
, ε−β(1)

)
∼
(
ε3α+2β

(
±s(q − 1)2 ± s± s(q − 1)± 3c± 3e

)
, ε−β(1)

)
· (ε−β(1), εα+β(±(q − 1)))

= ε3α+β

(
±s(q − 1)2 ± s± s(q − 1)± 3c± 3e

)
· εα(±(q − 1))ε2α+β(±(q − 1)2)ε3α+2β(±(q − 1)3)ε3α+β(±(q − 1)3)

=: D2.

However, similarly to the calculations of the �rst step showing (1 − t), (r) ⊂ εl(A, 8),

the factors ε3α+2β(±(q − 1)3) and ε3α+β(±(q − 1)3) are both elements of BA(8). Also

D2 ∈ BA(8) holds. Thus

D3 :=εα(±(q − 1))ε2α+β(±(q − 1)2)

ε3α+β

(
±s(q − 1)2 ± s± (q − 1)s± 3c± 3e

)
is an element of BA(16 + 2 ∗ 8) = BA(32). But applying Proposition 4.5.5 to D3 yields

that

(
[
±s(q − 1)2 ± s± (q − 1)s± 3c± 3e

]2
) ⊂ εl(A, 32 · 210) = εl(A, 6720).

This �nishes the proof of the the �rst statement of the third step.

For the second part of the third step, consider the commutator

(B, ε−α(4)) ∼ (ε3α+β(b)ε2α+β(c)εα+β(d)εα(e)Zβ, ε−α(4))

∼ (ε2α+β(c)εα+β(d)εα(e)Zβ, ε−α(4))(ε−α(4), ε3α+β(−b))

= (Zβ, ε−α(4))ε2α+β(c)εα+β(d)εα(e)

· (ε2α+β(c)εα+β(d)εα(e), ε−α(4)) · (ε−α(4), ε3α+β(−b)).

To proceed, we note two facts: First, observe that

(ε−α(4), ε3α+β(−b)) ∼ ε3α+2β(±64b2)εβ(±64b)εα+β(±16b)ε2α+β(±4b) (4.7)

But

(2b) ⊂ εl(A, 3888)

holds according to (4.6) and hence Lemma 3.5.4 implies

(4b) ⊂ εs(A, 3888 ∗ 8) = εs(A, 31104).
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These two facts imply together with (4.7) that

‖(ε−α(4), ε3α+β(−b))‖A ≤ 2 ∗ 3888 + 2 ∗ 31104 = 69984. (4.8)

Second, observe that Lemma 4.5.6 implies

(Zβ, ε−α(4)) = ε−α(±4(q − 1)) · ε−2α−β(±16s(q − 1))

· ε−α−β(±4s) · ε−2α−β(±16s) · ε−3α−β(±64s(q − 1)2 ± 64s± 64s(q − 1))

· ε−3α−2β(±64s2 ± 64s2(q − 1))

= ε−α(±4(q − 1)) · ε−2α−β(±16s(q − 1)± 16s)

· ε−α−β(±4s) · ε−3α−β(±64s(q − 1)2 ± 64s± 64s(q − 1))

· ε−3α−2β(±64s2 ± 64s2(q − 1)± 192s2)

But note that

(s) ⊂ εl(A, 8)

and hence Lemma 3.5.4 implies that

(2s) ⊂ εs(A, 64).

Hence ε−2α−β(±16s(q− 1)± 16s), ε−α−β(±4s) ∈ BA(64) and ε−3α−β(±64s(q− 1)2± 64s±
64s(q − 1)), ε−3α−2β(±64s2 ± 64s2(q − 1)± 192s2) ∈ BA(8) hold. Further, we have

(1− q) ⊂ ε(A, 3α + 2β, 8)

and thus Lemma 3.5.4(2) implies

(2(1− q)) ⊂ ε(A,α, 64).

Hence ‖ε−α(±4(q − 1))‖A ≤ 64. It follows that

‖(Zβ, ε−α(4))ε2α+β(c)εα+β(d)εα(e)‖A = ‖(Zβ, ε−α(4))‖A ≤ 3 ∗ 64 + 2 ∗ 8 = 208. (4.9)

Summarizing (4.8) and (4.9) with

BA(4) 3 (B, ε−α(4)) ∼(Zβ, ε−α(4))ε2α+β(c)εα+β(d)εα(e)

· (ε2α+β(c)εα+β(d)εα(e), ε−α(4))(ε−α(4), ε3α+β(−b))

we obtain ‖(ε2α+β(c)εα+β(d)εα(e), ε−α(4))‖A ≤ 4 + 69984 + 208 = 70196.
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Next, observe

(ε2α+β(c)εα+β(d)εα(e), ε−α(4))

∼ (εα(e), ε−α(4)) · (ε2α+β(−c)εα+β(−d), ε−α(4))−1

= (εα(e), ε−α(4)) · [(εα+β(−d), ε−α(4))ε2α+β(c)(ε2α+β(−c), ε−α(4))]−1

= (εα(e), ε−α(4)) · [εβ(±12d)ε2α+β(c)εα+β(±8c)εβ(±48c)ε3α+2β(±12c2)]−1

= (εα(e), ε−α(4)) · [εβ(±12d)εα+β(±8c)εβ(±48c)ε3α+2β(±12c2)]−1

= (εα(e), ε−α(4)) · [εβ(±12d± 48c)εα+β(±8c)ε3α+2β(±12c2)]−1

= (εα(e), ε−α(4)) · εβ(±12d± 48c)εα+β(±8c)ε3α+2β(±12c2) =: E1.

Observe ‖E1‖A ≤ 2 ∗ 70196 = 140392. To simplify notation, we set

u := ±12d± 48c, v := ±8c and w := ±12c2.

Note that (εα(e), ε−α(4)) commutes with ε−3α−2β(1) and hence

(E1, ε−3α−2β(1))

∼ (εβ(u)εα+β(v)ε3α+2β(w), ε−3α−2β(1))

∼ (ε3α+2β(w), ε−3α−2β(1)) · (εβ(u)εα+β(v), ε−3α−2β(1))−1

= (ε3α+2β(w), ε−3α−2β(1)) · [(εα+β(v), ε−3α−2β(1))εβ(u)(εβ(u), ε−3α−2β(1))]−1

= (ε3α+2β(w), ε−3α−2β(1)) · [(ε−3α−β(±v2)εβ(±v2)ε−α(±v2)ε−2α−β(±v))εβ(u)ε−3α−β(±u)]−1

= (ε3α+2β(w), ε−3α−2β(1)) · [ε−3α−β(±v2 ± u)εβ(±v2)ε−α(±v2)ε−2α−β(±v)]−1

= (ε3α+2β(w), ε−3α−2β(1)) · ε−2α−β(±v)ε−α(±v2)εβ(±v2)ε−3α−β(±v2 ± u) =: E2

Observe that ‖E2‖A ≤ 2∗140392 = 280784. But all factors ofE2 besides (ε3α+2β(w), ε−3α−2β(1))

and εβ(±v2) commute with ε−3α−2β(1) and hence

(E2, ε−3α−2β(1)) =
(
(ε3α+2β(w), ε−3α−2β(1)) εβ(±v2), ε−3α−2β(1)

)
∼
(
εβ(±v2), ε−3α−2β(1)

)
·
(
ε−3α−2β(1), (ε3α+2β(w), ε−3α−2β(1))−1

)
= ε−3α−β(±v2) ·

(
ε−3α−2β(1), (ε3α+2β(w), ε−3α−2β(1))−1

)
=: E3.

Observe that ‖E3‖A ≤ 2 ∗ 280784 = 561568. De�ne further

Z3α+2β := (ε−3α−2β(1), (ε3α+2β(w), ε−3α−2β(1))−1).

Observe next that according to Lemma 4.3.9 there are i, j ∈ R with

(Z3α+2β, ε−β(1)) = ε−β(i)ε3α+β(j).
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Thus, we obtain

(E3, ε−β(1)) ∼ (Z3α+2β, ε−β(1)) · (ε−β(1), ε−3α−β(±v2))

= ε−β(i)ε3α+β(j)ε−3α−2β(±v2).

Next, consider for x ∈ R the commutator

(ε−β(i)ε3α+β(j)ε−3α−2β(±v2), ε3α+β(x)) ∼ (ε−3α−2β(±v2), ε3α+β(x)) = ε−β(xv2).

But v = ±8c and hence we obtain that

(64c2) = (v2) ⊂ εl(A, 4 ∗ 561568) = εl(A, 2246272).

This �nishes the third step.

For the fourth step, de�ne the ideal I0(A) as follows:

I0(A) : = (1− t, 1− q, s, r, e3, b2, d3, (a± 3d2e)2, [±s(q − 1)2 ± s± (q − 1)s± 3c± 3e]2, 64c2)

⊂ εl(A, 4 ∗ 8 + 32 + 45360 + 32 + 45360 + 6720 + 2246272) = εl(A, 2343808).

To �nish the proof of the proposition, we prove that each maximal ideal m with

I0(A) ⊂ m contains a, b, c, d, e, 1 − t, 1 − q, r, s. Clearly 1 − t, 1 − q, s, r ∈ m. Observe

further that e, b, d are elements of m, because e3, b2, d3 ∈ m. Also (a± 3d2e) is an element

of m, because (a ± 3d2e)2 is an element of m. But e is an element of m and hence so is

a = (a± 3d2e)∓ 3d2e. Next, observe that

[±s(q − 1)2 ± s± (q − 1)s± 3c± 3e]2 ∈ m

holds and hence

[±s(q − 1)2 ± s± (q − 1)s± 3c± 3e] ∈ m

holds as well. But all the elements s(q − 1)2, s, (q − 1)s, 3e are already known to be

elements of m. Hence 3c is also an element of m. Next, observe that 64c2 = (8c)2 is an

element of m and hence 8c is an element of m as well. But if both 3c and 8c are elements

of m, then so is

c = 3 ∗ 3c− 8c.

But a, b, c, d, e, 1 − t, 1 − q, r, s ∈ m implies πm(B) = 1 and thus we obtain as

(A, ε3α+2β(1)) ∼ B that

πm(A, ε3α+2β(1)) = 1.

This �nishes the proof.
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Next, we show the following:

Proposition 4.5.7. Let R be a principal ideal domain and A ∈ G2(R). Then there is an

ideal

I(A) ⊂ εl(A, 14062848)

such that V (I(A)) ⊂ Π({A}). Phrased di�erently, for R a principal ideal domain, one

can pick L(G2) in Theorem 3.2.2 as L(G2) = 14062848.

Proof. First, we will construct the ideal I(A). For an element T ∈ G2(R) let I0(T ) be the

ideal constructed in Proposition 4.5.2.

De�ne

I(A) :=I0(A) + I0(wβAw
−1
β ) + I0((wαwβ)3A(wαwβ)−3)

+ I0(wβ(wαwβ)3A(wαwβ)−3w−1
β ) + I0(wβwα(A, εα(1))w−1

α w−1
β )

⊂ εl(A, 4 ∗ 2343808 + 2 ∗ 2343808) = εl(A, 14062848).

We will prove that I(A) has the desired properties. Let m be a maximal ideal con-

taining I(A) and set Ā := πm(A) and K := R/m. We will show that Ā is central in

G2(K). To see this, observe �rst that K is a �eld. Thus the Bruhat-decomposition

[41, Chapter 3, p. 26, Theorem 4'] of G2(K) implies that, one can �nd elements u1 ∈
U+(G2, K), w ∈ W (G2), t, s ∈ K − {0} as well as u2 ∈ U+(G2, K) with the property that

wu2w
−1 ∈ U−(G2, K), such that

Ā = u1hα(s)hβ(t)wu2.

By de�nition of I(A), the maximal ideal m contains I0(A) and hence as ε3α+2β(1) com-

mutes with all elements in U+(G2, K), we obtain

1 = (Ā, ε3α+2β(1))

= (u1hα(s)hβ(t)wu2, ε3α+2β(1)) = (u2, ε3α+2β(1))u1hα(s)hβ(t)w · (u1hα(s)hβ(t)w, ε3α+2β(1))

= 1u1hα(s)hβ(t)w · (u1hα(s)hβ(t)w, ε3α+2β(1)) = (u1hα(s)hβ(t)w, ε3α+2β(1))

∼ (hα(s)hβ(t)w, ε3α+2β(1)) = hα(s)hβ(t)wε3α+2β(1)w−1hβ(t−1)hα(s−1)ε3α+2β(−1)

= hα(s)hβεw(3α+2β)(±1)hβ(t−1)hα(s−1)ε3α+2β(−1)

= εw(3α+2β)(±s〈w(3α+2β),α〉t〈w(3α+2β),β〉)ε3α+2β(−1).

But according to [41, Chapter 3, p. 21, Corollary 2], the only way that the last term can

possibly be conjugate to 1 and hence be trivial is if w(3α + 2β) = 3α + 2β. One easily,

checks that this restricts the possible values for w ∈ W (G2) to w = wα and w = 1.

Let us assume for contradiction that w = wα. But u2 ∈ U+(G2, K) has the property

wu2w
−1 ∈ U−(G2, K) and hence, one obtains that there is a y ∈ K with u2 = εα(y).
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Furthermore, we can �nd a, b, c, d, e, f ∈ K with

u1 = ε3α+2β(f)ε3α+β(e)ε2α+β(d)εα+β(c)εα(b)εβ(a).

Recall that I0(wβAw
−1
β ) is a subset of m and hence wβĀw

−1
β commutes with ε3α+2β(1)

in G2(K). This implies

1 = (Ā, w−1
β ε3α+2β(1)wβ) = (Ā, ε3α+β(±1))

= (ε3α+2β(f)ε3α+β(e)ε2α+β(d)εα+β(c)εα(b)εβ(a)hα(s)hβ(t)wαεα(y), ε3α+β(±1))

= (ε3α+2β(f)ε3α+β(e)ε2α+β(d)εα+β(c)εα(b)εβ(a)hα(s)hβ(t)wα, ε3α+β(±1))

∼ (εβ(a)hα(s)hβ(t)wα, ε3α+β(±1))

∼ (hα(s)hβ(t)wα, ε3α+β(±1)) · (ε3α+β(±1), εβ(−a))

= hα(s)hβ(t)wαε3α+β(±1)w−1
α hβ(t−1)hα(s−1)ε3α+β(∓1) · ε3α+2β(±a)

= hα(s)hβ(t)εβ(±1)hβ(t−1)hα(s−1)ε3α+β(∓1) · ε3α+2β(±a)

= εβ(±s〈β,α〉t〈β,β〉)ε3α+β(∓1)ε3α+2β(±a)

= εβ(±s−3t2)ε3α+β(∓1)ε3α+2β(±a)

But according to [41, Chapter 3, p. 21, Corollary 2], independently of the values of

s, t and a, the last line is never trivial and this contradiction implies w = 1. Hence, Ā is

an element of B(G2, K) = B+(G2, K). But recall further that

I0((wαwβ)3A(wαwβ)−3) ⊂ m

and

I0(wβ(wαwβ)3A(wαwβ)−3w−1
β ) ⊂ m

This implies that Ā commutes with the two elements

(wαwβ)3ε3α+β(1)(wαwβ)−3 = ε−3α−2β(±1)

and

(wβ(wαwβ)3)ε3α+β(1)(wαwβ)−3w−1
β = ε−3α−β(±1)

and so we obtain similar to the previous calculations, that Ā ∈ B−(G2, K) holds as well.

But this implies

Ā ∈ B(G2, K) ∩B−(G2, K) = {hα(a)hβ(b)| a, b ∈ K − {0}}.
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Hence, we obtain Ā = hα(s)hβ(t) for certain s, t ∈ K − {0}. But this implies that

1 = (Ā, ε3α+2β(1)) = hα(s)hβ(t)ε3α+2β(1)hβ(t−1)hα(s−1)ε3α+2β(−1)

= ε3α+2β(s〈3α+2β,α〉t〈3α+2β,β〉)ε3α+2β(−1)

= ε3α+2β(s0t1 − 1) = ε3α+2β(t− 1).

Hence t = 1 holds and thus Ā = hα(s). Further Ā commutes with ε3α+β(1) and hence

1 = (Ā, ε3α+β(1)) = hα(s)ε3α+β(1)hα(s−1)ε3α+β(−1) = ε3α+β(s3 − 1).

This implies s3 = 1. Last, observe that

I0(wβwα(A, εα(1))w−1
α w−1

β ) ⊂ m.

This implies that wβwα(Ā, εα(1))w−1
α w−1

β commutes with ε3α+2β(1) and hence that (Ā, εα(1))

commutes with

w−1
α w−1

β ε3α+2β(1)wβwα = w−1
α ε3α+β(±1)wα = εβ(±1).

But observe

(Ā, εα(1)) = hα(s)εα(1)hα(s−1)εα(−1) = εα(s2 − 1).

Hence

1 = ((Ā, εα(1)), εβ(1)) = (εα(s2 − 1), εβ(1))

= ε3α+2β(±(s2 − 1)3)ε3α+β(±(s2 − 1)3)ε2α+β(±(s2 − 1)2)εα+β(±(s2 − 1))

follows. But this implies in turn that s2− 1 = 0 and hence s2 = 1. But if both s2 = 1 and

s3 = 1 hold, then s = 1 follows and hence Ā = 1. This �nishes the proof.
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Chapter 5

Strong and uniform boundedness and

stable range conditions

The strong boundedness theorems, Theorem 3.1.2 and Theorem 3.2.5 of Chapter 3 nat-

urally raise the question, which rings satisfy the main assumption, that is bounded gen-

eration by root elements and in case of Φ 6= C2 or G2 what the value of Q(Φ, R) is. The

main examples we talk about in this and the next chapter are rings of algebraic integers

and semi-local rings. Both of these classes of rings have stable range at most 2, so we

talk in the �rst section of this chapter about stable range conditions and their connection

to bounded generation. In the second section, we analyze the boundedness properties of

Chevalley groups de�ned over semi-local rings in greater depth. In the third section, we

show for a speci�c in�nite ring R that the assumption in Theorem 3.2.5 that R/2R is

�nite is not necessary to show that Sp4(R) is strongly bounded.

5.1 Stable range conditions and matrix decompositions

We �rst de�ne the stable range of rings:

De�nition 5.1.1. The stable range of a commutative ring R with 1 is the smallest n ∈ N
with the following property: If any v0, . . . , vm ∈ R generate the unit ideal R for m ≥ n,

then there are t1, . . . , tm such that the elements v′1 := v1 + t1v0, . . . , v
′
m := vm + tmv0 also

generate the unit ideal. If no such n exists, R has stable range +∞.

Remark 5.1.2. If for each a ∈ R−{0} the ring R/aR has stable range 1, then R is said to

have stable range at most 3/2. A ring R with stable range at most 3/2 has stable range

at most 2 as well. Further, having stable range at most m for m ∈ N or at most 3/2 are

�rst order properties.

Next, let n ≥ 1 be given. Then picking the standard representation of SLn+1(C) with
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maximal torus the diagonal matrices, one obtains

G(An, R) = SLn+1(R) = {A ∈ R(n+1)×(n+1)|det(A) = 1}

We can choose a system of positive simple roots {α1, . . . , αn} in the root system An such

that the corresponding Dynkin diagram looks as follows

α1α2· · ·αn

Then the root elements for positive, simple roots can be chosen as εαi(t) = In+1 +

ten+1−i,n−i+2 for t ∈ R and 1 ≤ i ≤ n. More generally, the root elements for positive

roots are then the elementary matrices In+1 + xei,j for 1 ≤ i < j ≤ n + 1 and the root

elements for negative roots are In+1 + xei,j for 1 ≤ j < i ≤ n + 1. This further yields

U+(An, R) as the group of upper unitriangular matrices and U−(An, R) as the group of

lower unitriangular matrices in R(n+1)×(n+1). Modulo these choices, note the following

result:

Proposition 5.1.3. [17, Lemma 9] Let m ∈ N and n ≥ m be given and let R be a

commutative ring with 1 of stable range at most m.

1. If m ≥ 2, let SLm(R) be identi�ed with a subgroup of SLn(R) as follows

SLm(R) = {

(
In−m

A

)
| A ∈ SLm(R)}.

Then SLn(R) = U+(An−1, R)U−(An−1, R)U+(An−1, R)U−(An−1, R)SLm(R) holds.

2. If m = 1, then SLn(R) = U+(An−1, R)U−(An−1, R)U+(An−1, R)U−(An−1, R) holds.

Recalling the choices made for the symplectic group in Section 4.1, we obtain the

following decomposition for symplectic groups:

Proposition 5.1.4. Let R be a ring of stable range at most 2 such that the group Sp4(R)

is generated by its root elements and let n ≥ 2 be given. Then identifying Sp4(R) with the

subgroup

Sp4(R) =




In−2

A

0n−2

B

0n−2

C

In−2

D

 |
 A B

C D

 ∈ Sp4(R)


of Sp2n(R), the following decomposition holds for the elementary subgroup E(Cn, R) of

Sp2n(R) :

E(Cn, R) = U+(Cn, R)U−(Cn, R)U+(Cn, R)U−(Cn, R)Sp4(R)
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Proof. In Section 4.1, we choose a system of positive simple roots {α1, . . . , αn−1, β} in Cn
such that the Dynkin-diagram of this system of positive simple roots has the following

form

βα1· · ·αn−1Cn :

and such that εαi(t) = I2n + t(en−i,n−i+1 − e2n−i+1,2n−i) for 1 ≤ i ≤ n− 1 and εβ(t) =

I2n + ten,2n hold for all t ∈ R.
We prove this proposition by adapting the strategy of the proof of [42, Proposition 1]

and proceeding by induction on n ∈ N. First, the statement is obvious for n = 2. Next,

set

X := U+(Cn, R)U−(Cn, R)U+(Cn, R)U−(Cn, R)Sp4(R).

To prove X = E(Cn, R) it su�ces to show A ·X ⊂ X for all A ∈ E(Cn, R), because

X contains the neutral element I2n. However E(Cn, R) is generated by root elements and

hence it su�ces to show εφ(t)X ⊂ X for all φ ∈ Cn and t ∈ R. However, each root element

is conjugate modulo elements of the Weyl group to an element of the form εφ(t) for φ a

simple positive root. Thus it su�ces to show wφX ⊂ X and εφ(t)X ⊂ X for all positive,

simple roots φ and all t ∈ R. But

wφ = εφ(1)ε−φ(−1)εφ(1)

holds. Hence it su�ces to show εφ(t)X ⊂ X and ε−φ(t)X ⊂ X for all positive, simple

roots φ and all t ∈ R.
However due to the de�nition of X, it is clear that εφ(t)X ⊂ X holds for all positive,

simple roots φ and all t ∈ R. Thus it su�ces to show ε−φ(t)X ⊂ X for all positive, simple

roots φ and all t ∈ R.
We distinguish two cases for φ. First, assume that φ is not αn−1. Then we separate Cn

into two subsets: The subset Φ1 of roots whose expression in terms of simple roots does

not involve αn−1 and its complement Φ2 in Cn. Clearly Φ1 is as a root subsystem of Cn
isomorphic to Cn−1. Next, observe that according to [41, Chapter 11, p. 104, Lemma 62]

and slightly abusing notation by writing U±(Φ2, R) for the subgroup of E(Cn, R) generated

by the elements {εφ(x)| x ∈ R, φ ∈ Φ2 ∩ Φ±}, we have

U+(Φ1, R) · U−(Φ2, R) = U−(Φ2, R) · U+(Φ1, R) and (5.1)

U−(Φ1, R) · U+(Φ2, R) = U+(Φ2, R) · U−(Φ1, R). (5.2)

Reordering the terms in U+(Cn, R), we have further

U+(Cn, R) = U+(Φ2, R) · U+(Φ1, R) = U+(Φ1, R) · U+(Φ2, R)
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and similarly

U−(Cn, R) = U−(Φ2, R) · U−(Φ1, R) = U−(Φ1, R) · U−(Φ2, R)

and applying these equation for U−(Cn, R) and U+(Cn, R) together with (5.1) and (5.2)

repeatedly to the de�nition of X, we obtain

X = (U+(Φ2, R)U−(Φ2, R))2(U+(Φ1, R)U−(Φ1, R))2Sp4(R).

But note that ε−φ(t) is an element of U−(Φ1, R) and hence applying (5.1) and ((5.2))

repeatedly, we obtain

ε−φ(t)X = ε−φ(t) · (U+(Φ2, R)U−(Φ2, R))2 · (U+(Φ1, R)U−(Φ1, R))2 · Sp4(R)

⊂ U−(Φ1, R) · (U+(Φ2, R)U−(Φ2, R))2 · (U+(Φ1, R)U−(Φ1, R))2 · Sp4(R)

= (U+(Φ2, R)U−(Φ2, R))2 · [U−(Φ1, R) · (U+(Φ1, R) · U−(Φ1, R))2 · Sp4(R)].

However, note that Φ1 is equal to the root subsystem generated by α1, . . . , αn−2, β and

U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2Sp4(R) is a subset of the subgroup


1

A

0

B

0

C

1

D

 |
 A B

C D

 ∈ E(Cn−1, R)


of Sp2n(R). But this subgroup is isomorphic to E(Cn−1, R) and so we know by induction

that

U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2Sp4(R) ⊂ (U+(Φ1, R)U−(Φ1, R))2Sp4(R)

holds and hence

ε−φ(t)X ⊂ (U+(Φ2, R)U−(Φ2, R))2(U+(Φ1, R)U−(Φ1, R))2Sp4(R) = X

holds. This �nishes the case φ 6= αn−1.

If φ = αn−1 holds, then we decompose Cn into the subset Φ1 of roots whose expression

in terms of simple roots does not involve β and its complement Φ2 in Cn. Then as before,

we can observe

ε−φ(t)X ⊂ (U+(Φ2, R)U−(Φ2, R))2 · [U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2]Sp4(R).

However, the root system Φ1 is equal to the root subsystem generated by α1, . . . , αn−1
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and [U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2] is a subset of the subgroup
 A 0n

0n A−T

 | A ∈ E(An−1, R)


of Sp2n(R). But this subgroup is isomorphic to the subgroup E(An−1, R) of SLn(R) Thus

by applying Proposition 5.1.3 and the fact that R has stable range 2, we obtain

U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2 ⊂ (U+(Φ1, R)U−(Φ1, R))2H

for

H :=




In−2

A
0n

0n
In−2

A−T

 | A ∈ SL2(R)


But H is a subgroup of Sp4(R) and hence we obtain

εφ(t)X ∈ (U+(Φ2, R)U−(Φ2, R))2 · [U−(Φ1, R) · (U+(Φ1, R)U−(Φ1, R))2] · Sp4(R)

⊂ (U+(Φ2, R)U−(Φ2, R))2 · (U+(Φ1, R)U−(Φ1, R))2 ·H · Sp4(R) = X

⊂ (U+(Φ2, R)U−(Φ2, R))2 · (U+(Φ1, R)U−(Φ1, R))2 · Sp4(R) = X.

This �nishes the proof.

Remark 5.1.5. This is a result with quite a similar proof as the classical result [40, The-

orem 2.5] and we suspect it is well-known or obvious to experts in algebraic K-theory.

Note the following observation:

Lemma 5.1.6. Let R be a principal ideal domain. Then R has stable range at most 2.

The proof can be found in Appendix C. In a similar fashion to Proposition 5.1.4 one

can prove the following two propositions:

Proposition 5.1.7. Let R be a principal ideal domain such that SL2(R) = G(A1, R) is

generated by root elements. Further let {α, β, γ, δ, ε, φ} be a system of simple, positive

roots such that the corresponding Dynkin diagram has the following form

εδγ

φ

βαE6 :
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Then

E(E6, R) = (U+(E6, R)U−(E6, R))2Gε(R)

holds.

and:

Proposition 5.1.8. Let R be a commutative ring with 1 and N ∈ N such that

G(A1, R) = E(A1, R) = (U+(A1, R)U−(A1, R))N ,

G(A1, R) = E(A1, R) = U−(A1, R)(U+(A1, R)U−(A1, R))N

or

G(A1, R) = E(A1, R) = (U+(A1, R)U−(A1, R))NU+(A1, R)

holds. Then

E(Φ, R) = (U+(Φ, R)U−(Φ, R))N ,

E(Φ, R) = U−(Φ, R)(U+(Φ, R)U−(Φ, R))N

or

E(Φ, R) = (U+(Φ, R)U−(Φ, R))NU+(Φ, R)

respectively holds for all irreducible root systems Φ. In particular,

E(Φ, R) = (U+(Φ, R)U−(Φ, R))2

holds for R a ring of stable range 1.

This corollary is mainly useful for semi-local rings as seen in the next section. Next,

we give a more detailed analysis of the asymptotics of bounded generation for SLn and

Sp2n. First, recall the following word norm from De�nition 2.2.2:

De�nition 5.1.9. Let R be a commutative ring with 1 and Φ an irreducible root system

such that G(Φ, R) is generated by root elements. Then de�ne the set

ELQ := {Aεφ(t)A−1| t ∈ R, φ ∈ Φ, A ∈ G(Φ, R)}

and de�ne the word norm ‖ · ‖ELQ : G(Φ, R)→ N0 as ‖1‖ELQ := 0 and as

‖X‖ELQ := min{n ∈ N|∃A1, . . . , An ∈ ELQ : X = A1 · · ·An}

for X 6= 1.

Having this norm, we can show:

120



Proposition 5.1.10. Let R be a principal ideal domain and let n ≥ 3.

1. If Sp4(R) and Sp2n(R) are generated by its root elements and there is a K ∈ N with

‖Sp4(R)‖ELQ ≤ K,

then

‖Sp2n(R)‖ELQ ≤ 12(n− 2) +K

2. If SL3(R) and SLn(R) are generated by its root elements and there is a K ∈ N with

‖SL3(R)‖ELQ ≤ K,

then

‖SLn(R)‖ELQ ≤ 4(n− 3) +K.

Proof. We only deal with the case of Sp2n(R), because the statement for SLn(R) is the

content of [24, Proposition 6.20].

Considering Sp4(R) as a subgroup of Sp2n(R) as done in Proposition 5.1.4, we �rst

prove by induction that:

Claim 5.1.10.1. For each A ∈ U+(Cn, R) there is an A′ ∈ U+(C2, R) with ‖A′−1A‖ELQ ≤
3(n− 2) for n ≥ 2.

First, the claim is clear for n = 2.

Let A ∈ U+(Cn, R) be given. Then it has the form

A =



1 a1,2 · · a1,n

1 a2,3 · a2,n

1 · ·
· ·

1

On

a1,n+1 · · · a1,2n

a2,n+1 · · · a2,2n

a3,n+1 · · · a3,2n

· · · · ·
an,n+1 · · · an,2n

1

−a1,2 1

· −a2,3 1

· · · ·
−a1,n −a2,n · · 1


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Multiplying A with the matrix

T := (I2n − a1,2(e1,2 − en+2,n+1)) · (I2n − a1,3(e1,3 − en+3,n+1)) · · · (I2n − a1,n(e1,n − e2n,n+1))

=



1 −a1,2 −a1,3 · · · −a1,n

1

1

·
1

0n

0n

1

a1,2 1

a1,3 1

· ·
a1,n 1


from the right yields an element B of U+(Cn, R) with the �rst n entries of the �rst row

of B being 0, except for the (1, 1)-entry, which is 1. However, according to the proof of

Lemma 4.1.4, there is a matrix D ∈ Sp2n(R) of the form

D =


1

D′
0n

0n
1

D′−T


for D′ ∈ SLn−1(R) such that the �rst column of DT TD−1 has the form

(1, t, 0, . . . , 0)T

for t = gcd(−a1,2,−a1,3, . . . ,−a1,n). However, due to the form of T T and D, this implies

that DT TD−1 = I2n + t(e21 − en+1,n+2) and hence

DTTD−T = I2n + t(e12 − en+2,n+1)

holds. This implies ‖T‖ELQ ≤ 1.
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Then B = A · T has the form

B =



1 0 · · 0

1 b2,3 · b2,n

1 · ·
· ·

1

On

b1,n+1 · · · b1,2n

b2,n+1 · · · b2,2n

· · · · ·
bn,n+1 · · · bn,2n

bn,n+1 · · · bn,2n

1

0 1

0 −b2,3 1

· · · ·
0 −b2,n · · 1


Next, multiplying B with

S :=(I2n − b1,n+1e1,n+1) · (I2n − b1,n+2(e1,n+2 + e2,n+1)) · (I2n − b1,n+3(e1,n+3 + e3,n+1))

· · · (I2n − b1,2n(e1,2n + en,n+1))

=


In

−b1,n+1 −b1,n+2 −b1,n+3 · · · −b1,2n

−b1,n+2

−b1,n+3

· 0n−1

·
−b1,2n

0n In


from the right yields an element C ∈ U+(Cn, R) whose �rst row is

(1, 0, . . . , 0).

But applying the proof of Lemma 4.1.10, we can �nd a matrix of the form

E =


1

E ′
0n

0n
1

E ′−T


for E ′ ∈ SLn−1(R) such that the �rst column of ESTE−1 has the form

(1, 0, . . . , 0,−b1,n+1, s, . . . , 0)T
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for s = gcd(b1,n+2, b1,n+3, . . . , b1,2n). However, due to the form of ST and E, this implies

that ESTE−1 = (I2n − b1,n+1en+1,1) · (I2n + s(en+1,2 + en+2,1)) and hence

ETSE−T = (I2n − b1,n+1e1,n+1) · (I2n + s(e1,n+2 + e2,n+1))

holds. This implies that ‖T‖ELQ ≤ 2.

But note that C must be an element of the subgroup U+(Cn−1, R) of U+(Cn, R), if its

�rst row is

(1, 0, . . . , 0)T .

This yields by induction that there is a C ′ ∈ U+(C2, R) with

‖C ′−1C‖ELQ ≤ 3(n− 1− 2) = 3(n− 3)

holds. Hence setting A′ as C ′, one obtains from C = ATS that

‖A′−1A‖ELQ = ‖C ′−1CS−1T−1‖ELQ ≤ ‖C ′−1C‖ELQ + ‖T‖ELQ + ‖S‖ELQ

≤ 3(n− 3) + 3 = 3(n− 2).

Thus the claim holds for all n ≥ 2. Further, Proposition 5.1.4 yields that

Sp2n(R) = (U+(Cn, R)U−(Cn, R))2Sp4(R)

for all n ≥ 2. Let A ∈ Sp2n(R) be given. Hence there are u+
1 , u

+
2 ∈ U+(Cn, R), u−1 , u

−
2 ∈

U−(Cn, R) as well as Z ∈ Sp4(R) with

A = u+
1 u
−
1 u

+
2 u
−
2 Z

But U+(Cn, R) and U−(Cn, R) are conjugate in Sp2n(R). Hence applying the claim of the

�rst part of the proof to the u+
1 , u

−
1 , u

+
2 , u

−
2 yields X1, X2, Y1, Y2 ∈ Sp2n(R) with

‖X1‖ELQ , ‖X2‖ELQ , ‖Y1‖ELQ , ‖Y2‖ELQ ≤ 3(n− 2)

and v+
1 , v

+
2 ∈ U+(C2, R) and v−1 , v

−
2 ∈ U−(C2, R) such that

u+
1 = v+

1 X1, u
+
2 = v+

2 X2, u
−
1 = v−1 Y1, u

−
2 = v−2 Y2.
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But this implies

A = u+
1 u
−
1 u

+
2 u
−
2 Z = (v+

1 X1) · (v−1 Y1) · (v+
2 X2) · (v−2 Y2)Z

= (v+
1 X1(v+

1 )−1) · (v+
1 v
−
2 Y1(v+

1 v
−
2 )−1) · (v+

1 v
−
2 v

+
2 X2(v+

1 v
−
2 v

+
2 )−1)

· (v+
1 v
−
2 v

+
2 v
−
2 X2(v+

1 v
−
2 v

+
2 v
−
2 )−1) · (v+

1 v
−
2 v

+
2 v
−
2 ) · Z

= (X
v+
1

1 ) · (Y v+
1 v
−
2

1 ) · (Xv+
1 v
−
2 v

+
2

2 ) · (Y v+
1 v
−
2 v

+
2 v
−
2

2 ) · (v+
1 v
−
2 v

+
2 v
−
2 ) · Z.

But (v+
1 v
−
2 v

+
2 v
−
2 ) · Z is an element of Sp4(R) and hence

‖(v+
1 v
−
2 v

+
2 v
−
2 ) · Z‖ELQ ≤ K

holds. This implies

‖A‖ELQ = ‖(Xv+
1

1 ) · (Y v+
1 v
−
2

1 ) · (Xv+
1 v
−
2 v

+
2

2 ) · (Y v+
1 v
−
2 v

+
2 v
−
2

2 ) · (v+
1 v
−
2 v

+
2 v
−
2 ) · Z‖ELQ

≤ ‖X1‖ELQ + ‖Y1‖ELQ + ‖X2‖ELQ + ‖Y2‖ELQ + ‖(v+
1 v
−
2 v

+
2 v
−
2 ) · Z‖ELQ

≤ 4 ∗ 3 ∗ (n− 2) +K = 12(n− 2) +K.

This yields the statement of the proposition for Sp2n(R).

5.2 Rings of stable range 1, semi-local rings and uni-

form boundedness

Proposition 5.1.8 states that E(Φ, R) is boundedly generated by root elements for all

irreducible root systems Φ and all rings of stable range at most 1 and that that each

element in E(Φ, R) can be written as a product of at most four upper and lower unipotent

elements. This was observed by Vavilov, Smolenski, Sury in [45, Theorem 1]. The main

example of rings of stable range 1 are semi-local rings, that is rings with only �nitely

many maximal ideals:

Lemma 5.2.1. [5, Lemma 6.4, Corollary 6.5] Every semilocal ring, that is each ring with

only �nitely many maximal ideals has stable range 1. So also each �eld has stable range

1.

Note:

Proposition 5.2.2. [3, Corollary 2.4] Let R be a semi-local ring. Then for all irreducible

root systems Φ of rank greater than one, the group G(Φ, R) is generated by root elements.

This implies together with Proposition 5.1.8:

Proposition 5.2.3. Let R be a semilocal ring and Φ a root system. Then the group

G(Φ, R) is boundedly generated by root elements.
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Hence the strong boundedness theorems can be applied to G(Φ, R). For semi-local

rings R, the group G(Φ, R) is in fact uniformly bounded. First, this can be seen quite

abstractly:

Theorem 5.2.4. Let R be a commutative, semilocal ring with 1 and let Φ an irreducible

root system of rank at least 2. Furthermore, assume if Φ = C2 or G2 that (R : 2R) <∞
holds. Then G(Φ, R) is uniformly bounded.

Proof. The strategy is to �nd a constant K ∈ N such that each �nite normally generating

subset S of G := G(Φ, R) has a subset S̄ with |S̄| ≤ K such that S̄ is also a normally gen-

erating subset of G(Φ, R). Then Proposition 5.2.3 with Theorem 3.1.2 and Theorem 3.2.5

respectively yield the claim, because

‖G(Φ, R)‖S ≤ ‖G(Φ, R)‖S̄ ≤ C(Φ, R)|S̄| ≤ C(Φ, R)K

and so uniform boundedness for G(Φ, R) holds.

Assume R has precisely q maximal ideals. Let S be a �nite set of normal generators

of G(Φ, R). Corollary 3.2.8 implies Π(S) = ∅. But according to Lemma 3.0.2, we have

Π(T1 ∪ T2) = Π(T1) ∩ Π(T2) for all T1, T2 ⊂ G(Φ, R). This implies that if there are only

q maximal ideals in R, then already some subset S ′ of S with |S ′| ≤ q has the property⋂
A∈S′ Π(A) = ∅. Hence in case Φ 6= C2 or G2, Corollary 3.2.8 tells us that S ′ is already a

normally generating subset of G(Φ, R). This �nishes the case Φ 6= C2, G2.

Next, we do the case Φ = C2 or G2. We have (R : 2R) <∞ by assumption and hence

Lemma 3.2.3 implies for NΦ, that the group G/NΦ is �nite. The set S normally generates

the group G and hence the image of S in G/NΦ normally generates G/NΦ and so we can

pick a subset S ′′ ⊂ S with at most M := |G/NΦ| elements such that the image of S ′′ in

G/N normally generates G/NΦ. Hence considering the set S̄ := S ′ ∪ S ′′, we have

|S̄| ≤ |S ′|+ |S ′′| ≤ q +M

and the upper bound q+M clearly does not depend on S. Corollary 3.2.8 implies that S̄

is a normally generating set of G(Φ, R). Thus we are done.

We did give explicit values for L(Φ) for some Φ in case of principal ideal domains, so

we obtain:

Corollary 5.2.5. Let R be a semi-local ring and a principal ideal domain with at most q

distinct maximal ideals. Further let n ≥ 3 and k ∈ N be given.

1. ∆k(SLn(R)) ≤ 12(n− 1) min{q, k(n+ 1)}

2. ∆k(Sp2n(R)) ≤ 768(3n− 2) min{q, (5n+ 1)k},
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Proof. The statement for SLn(R) is the content of [24, Theorem 6.3]. For Sp2n(R) let

S = {A1, . . . , Ak} be a normal generating set of Sp2n(R). For 1 ≤ i ≤ k, let I(Ai) ⊂
εs(Aj, 64(1+5n)) be the ideal given by Theorem 4.1.3 with V (I(Ai)) ⊂ Π({Ai}). However
Corollary 3.2.8 yields V (I(A1) + · · · + I(Ak)) ⊂ Π(S) = ∅ and so no maximal ideal can

contain the ideal I(A1) + · · ·+ I(Ak). Thus
∑k

i=1 I(Ai) = R and so

R = εs(A, 64k(5n+ 1)). (5.3)

According to Corollary 4.1.18, each of the I(Ai) is a sum of 7n+1 ideals J1(Ai), . . . , J7n+1(Ai),

each of which is contained in εs(Ai, 64). Hence

k∑
i=1

7n+1∑
j=1

Jj(Ai) = R

holds. Next, let m be one of the maximal ideals of R. Clearly not all of the ideals Jj(Ai)

can be contained in m. Hence there are i(m) ∈ {1, . . . , k} and j(m) ∈ {1, . . . , 7n + 1}
with

Jj(m)(Ai(m)) 6⊂ m.

But this implies that ∑
m maximal ideal in R

Jj(m)(Ai(m))

cannot be contained in any maximal ideal and thus must be the entire ring R. But this

implies

R = εs(A, 64q) (5.4)

Summarizing (5.3) and (5.4) yields

R = εs(A, 64 min{q, k(5n+ 1)) (5.5)

holds. But then similar to the proof of Proposition 3.1.3, one can show that all root

elements in Sp2n(R) are contained in BS(3∗64 min{q, k(5n+1)}) = BS(192 min{q, k(5n+

1)}) and so are all elements in ELQ. Thus

‖ELQ‖S ≤ 192 min{q, k(5n+ 1)} (5.6)

On the other hand, as R is semi-local and hence of stable range 1, one has

Sp4(R) = U+(C2, R)U−(C2, R)U+(C2, R)U−(C2, R)
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according to Proposition 5.1.8 and hence

‖Sp4(R)‖ELQ = 4 ∗ ‖U+(C2, R)‖ELQ = 16

holds. Thus Proposition 5.1.10 yields

‖Sp2n(R)‖ELQ ≤ 12(n− 2) + 16 = 12n− 8.

This bound together with (5.6) implies

‖Sp2n(R)‖S ≤ ‖Sp2n(R)‖ELQ · ‖ELQ‖S ≤ (12n− 8) · 192 min{q, (5n+ 1)k}

= 768(3n− 2) min{q, (5n+ 1)k}.

This �nishes the proof for Sp2n(R).

Remark 5.2.6. One could improve the bound on ‖Sp2n(R)‖ELQ further by observing that

each element of the form u+
1 u
−
1 u

+
2 u
−
2 can be rewritten as the product (u−1 )u

+
1 (u+

1 u
+
2 )u−2 ,

and hence ‖Sp2n(R)‖ELQ ≤ 3‖U+(Cn, R)‖ELQ holds and thus it su�ces to give bounds on

‖U+(Cn, R)‖ELQ , which can be done in a similar way as in the proof of Proposition 5.1.10.

In this context, we also prove the following more explicit version of Theorem 5.2.4 in

a special case where we can drop the assumption of R being a principal ideal domain:

Theorem 5.2.7. Let R be a local ring and n ≥ 3. Then ∆∞(SLn(R)) ≤ 24(2n−3) holds.

Proof. Let m be the unique maximal ideal of R. Further, let S be a normal generating

set of SLn(R) and hence Π(S) = ∅ holds according to Corollary 3.2.8. But R has only

one maximal ideal and so there must be at least one element A(S) ∈ S such that already

Π({A(S)}) = ∅ holds. Hence using Corollary 3.2.8, we may assume that S = {A(S)}.
For brevity write A := (aij) := A(S) and so we only have to give an upper bound on

the diameter ‖SLn(R)‖A. To this end, we distinguish two cases, �rst that there is no

o�-diagonal entry of A which is not an element of m and second that there is one. In

the �rst case, there must be two 1 ≤ k, l ≤ n with akk 6≡ all mod m, because otherwise

πm(A) would be scalar, which would imply Π({A}) = {m}, which is not possible. After

conjugation with possible Weyl-group elements, we may assume k = 1 and l = 2. Then

setting āij := aij +m ∈ R/m, we obtain

πm((A, In + e12)) = In + (ākkāll
−1 − 1)e12.

This implies that the (1, 2)-entry of (A, In + e12) is not an element of m. Hence in both

cases, we may assume that there is an element B = (bij) ∈ BA(2) with an o�-diagonal

entry that is not an element of m. Again after conjugation, we may assume that this entry
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of B, which is not an element of m is the (2, 1)-entry of B. In particular, the (2, 1)-entry

of B is a unit t in the ring R. But this in turn implies that

C := (In − t−1bn1en,2)B(In + t−1b1nen,2)

still has the (2, 1)-entry equal to t, but also has the (n, 1)-entry equal to 0.

Next, let D = (cij) be the inverse of C. Again, there must be an o�-diagonal entry duv
of C such that duv is not an element of m, because otherwise πm(C) and πm(D) would

both be diagonal, which we know is not the case. Then [24, Lemma 6.7] implies that

E := ((C, In + e1u), In + ev,n) = In + duvCe1n.

Note, that E is an element of BA(4) and further observe that the (2, n)-entry of E is duvt.

This �nally implies for x ∈ R arbitrary that

(In + xt−1d−1
uv e12, E) = In + xe1n

is an element of BA(8). In particular, this implies that R = ε(A, 8) and so ‖ELQ‖A ≤ 8.

But R is local and hence has stable range 1, so Proposition 5.1.3 implies

SLn(R) = (U+(An−1, R)U−(An−1, R))2.

So for X ∈ SLn(R) arbitrary, there are u+
1 , u

+
2 ∈ U+(An−1, R) and u−1 , u

−
2 ∈ U−(An−1, R)

such that X = u+
1 u
−
1 u

+
2 u
−
1 . Hence we obtain

X = u+
1 u
−
1 u

+
2 u
−
1 = (u−2 )u

+
1 (u+

1 u
+
2 )u−2

and so as the upper and lower unipotent groups are conjugate to each other, we obtain

from ‖ELQ‖A ≤ 8 that

‖X‖A ≤ 3‖U+(An−1, R)‖A ≤ 3‖ELQ‖A · ‖U+(An−1, R)‖ELQ ≤ 24‖U+(An−1, R)‖ELQ .

Thus it su�ces to give an upper bound on ‖U+(An−1, R)‖ELQ in order to give an upper

bound on ‖SLn(R)‖A.
To this end we prove by induction on n ≥ 2 that

‖U+(An−1, R)‖ELQ ≤ 2n− 3.

First, observe that the case of n = 2 is clear. For the induction step observe �rst that for
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U = (uij) ∈ U+(An−1, R), one obtains that

U ′ := U · (In − u12e12) · (In − u13e13) · · · (In − u1ne1n)

is an element of a subgroup of U+(An−1, R) isomorphic to U+(An−2, R). Thus by induction,

we obtain ‖U ′‖ELQ ≤ 2(n− 1)− 3 = 2n− 5. Next, consider the element

T := (In − u12e12) · (In − u13e13) · · · (In − u1ne1n) =


1 −u12 −u13 · −u1n

1 0 · 0

·
·

1


We distinguish two cases now: The �rst case is that one of the u12, . . . , u1n is not an

element of m and the second one is that they all are elements of m. In the �rst case, we

may by conjugating with elements of the Weyl group assume that u12 is this element. In

the second case, observe that

T ′ := (In + e12)T = (In + (1− u12)e12) · (In − u13e13) · · · (In − u1ne1n)

has (1, 2)-entry equal to 1 − u12. However as u12 is assumed to be an element of m, the

element 1− u12 cannot be an element of m. Thus up to multiplication with a single root

element, we may assume in either case that the (1, 2)-entry of T is not an element of m

and we call this unit s ∈ R. But then observe further that

(In − s−1u13e23) · · · (In − s−1u1ne2n)T (In + s−1u1ne2n) · · · (In + s−1u13e23) = In + se12.

But this implies that in either of the two cases ‖T‖ELQ ≤ 2 and so we obtain

‖U‖ELQ = ‖U ′T−1‖ELQ ≤ ‖U ′‖ELQ + ‖T‖ELQ ≤ 2n− 5 + 2 = 2n− 3.

But this �nishes the induction and so we obtain ‖U+(An, R)‖ELQ ≤ 2n−3. This inequality

together with the already seen inequality

‖SLn(R)‖A ≤ 24‖U+(An, R)‖ELQ

implies the claim of the theorem.

Remark 5.2.8. One can generalize this theorem to the case of semi-local rings R with as

well, but this would be more involved.

We also obtain the following:
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Theorem 5.2.9. Let R be a commutative ring with 1 of stable range 1 and Φ an irreducible

root system of rank at least 2. If Φ = C2 or G2 assume further that (R : 2R) <∞. Then
for the elementary subgroup E(Φ, R) of G(Φ, R), there is a constant C(Φ, R) such that

∆k(E(Φ, R)) ≤ C(Φ, R)k

for all k ∈ N.

Proof. We want to show a version of Theorem 3.1.2 and Theorem 3.2.5 that speak about

E(Φ, R) instead of G(Φ, R). This can be done by following the same arguments essentially.

The only di�erence in the proofs are in the proofs of Theorem 3.1.1, Theorem 3.2.1 and

Theorem 3.2.2. These di�erences are that in the sentences of the theories Tkl, one must

quantify over all elements of E(Φ, R), which cannot be de�ned in a straight forward

manner instead of elements of G(Φ, R). However, this issue can be resolved by breaking

up the sentences called θr involved in the proofs further in such a way that the conjugating

elements X1, . . . , Xr appearing in the θr are only allowed to be products of at most r root

elements. The rest of the proof then goes through in essentially the same way using

that R being of stable range 1 implies (U+(Φ, R)U−(Φ, R))2 = E(Φ, R) for such rings by

Proposition 5.1.8 and hence E(Φ, R) is boundedly generated by root elements.

5.3 Bounded generation and strong boundedness in pos-

itive characteristic

The main problem in positive characteristic is that there are no bounded generation by

root element results known to us for these class of rings except for a result by Nica [34]

stating bounded generation of SLn(F[T ]) for F a �nite �eld and n ≥ 3. We suspect that

the following holds:

Conjecture 5.3.1. Let Φ be an irreducible root system of rank at least 2, K a global �eld

and R a ring of S-algebraic integers in K. Then G(Φ, R) is boundedly generated by root

elements.

Another problem occurs in lower ranks, namely for Φ = C2 or G2 : We often assume

for those Φ that R/2R is �nite. But this is not generally the case for char(R) = 2, say

R = F2[T ]. However, we still believe that strong boundedness is the norm for these rings

and to illustrate this point we prove the following version of Theorem 5.2.4 in positive

characteristic.

Theorem 5.3.2. Let F be a �nite �eld, P a prime ideal in F[T ] and R the localization of

F[T ] at P. Then Sp4(R) is uniformly bounded.
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To show this, we need the following proposition:

Proposition 5.3.3. Let P be a prime ideal of F[T ] with F a �nite �eld of characteristic

2 and let R be the localization of F[T ] at P. Further let N be the normal subgroup of

Sp4(R) generated by

A := εα+β(1)ε2α+β(1).

Further let ‖ · ‖A : Sp4(R) → N0 ∪ {+∞} be the conjugation generated word norm on

Sp4(R) de�ned as in De�ntion 2.0.1. Then

1. N is a �nite index subgroup of Sp4(R) and

2. the norm ‖ · ‖A has �nite diameter on N .

Proof. First, we will show that

I := (x− x2|x ∈ R) ⊂ ε(A, φ, 24)

for all φ ∈ C2 and second, we will deduce the two statements of the proposition from this.

First, observe for any x ∈ R that

BA(2) 3 (εα+β(1)ε2α+β(1), ε−β(x)) = εα(x)ε2α+β(x). (5.7)

This yields that

BA(2) 3wβwαwβεα(x)ε2α+β(x)w−1
β w−1

α w−1
β

= wβwαεα+β(x)ε2α+β(x)w−1
α w−1

β

= wβεα+β(x)εβ(x)w−1
β = εα(x)ε−β(x).

On the other hand (5.7) implies for x, y ∈ R that

BA(4) 3 (εα(y)ε2α+β(y), ε−(α+β)(x)) = (ε2α+β(y), ε−(α+β)(x))εα(y)ε−β(2xy)

∼ εα(xy)ε−β(x2y).

But this implies then that

ε−β(x2y − xy) = ε−β(x2y)ε−β(xy) =
(
ε−β(x2y)εα(xy)

)
· (εα(xy)ε−β(xy)) ∈ BA(6).

This implies in particular that the ideal (x2 − x|x ∈ R) is contained in ε(A, β, 6) and

hence according to Lemma 3.4.2, the inclusion I = (x2 − x|x ∈ R) ⊂ ε(A, φ, 24) holds for

all φ ∈ C2. Next, we will show that I has �nite index in R. There are two possible cases:

Either P has the property F[T ]/P = F2 or not. If F[T ]/P 6= F2, then there is an element

x ∈ F[T ] such that x(1−x) is not an element of P ⊂ F[T ] and hence x(1−x) is invertible in
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R. Thus in this case I is the entire ring R. So assume the other case, that is F[T ]/P = F2.

This immediately implies that F = F2 and P = T · F2[T ] or P = (T − 1) · F2[T ]. Wlog

we assume that P = T · F2[T ]. But observe, that T 2 − T = T (T − 1) is an element of I

and hence as T − 1 is a unit in R, this implies that T is an element of I. This yields that

R/I = F2. So in either case I has �nite index in R.

Next, pick a set X ⊂ R with of coset representatives of I in R. According to Propo-

sition 5.2.3, Sp4(R) is boundedly generated by root elements, because R is local. So let

K ∈ N be given such that each element in Sp4(R) can be written as a product of at

most K root elements. Let X ∈ Sp4(R) be given and choose a1, . . . , aK ∈ R as well as

φ1, . . . , φK ∈ C2 such that

X =
K∏
i=1

εφi(ai).

Each element a ∈ R can be written as a = b + x for b ∈ I and x ∈ X. So choose

x1, . . . , xK ∈ X and b1, . . . , bK ∈ I with ai = xi + bi for all i = 1, . . . , K. Then, obtain

X =
K∏
i=1

εφi(bi)εφi(xi) = εφ1(b1) · [
K∏
i=2

εφi(bi)
εφ1

(x1)···εφi−1
(xi−1)] · [εφ1(x1) · · · εφK (xK)] (5.8)

But we already know that all the elements

εφ1(b1), {εφi(bi)
εφ1

(x1)···εφi−1
(xi−1)}2≤i≤K

are elements of N and there are only �nitely many possibilities for the product

εφ1(x1) · · · εφK (xK).

HenceN has �nite index in Sp4(R).On the other hand, ifX is inN, then εφ1(x1) · · · εφK (xK)

is also an element ofN . But there are only �nitely many possibilities for εφ1(x1) · · · εφK (xK),

so there is an M ∈ N such that ‖εφ1(x1) · · · εφK (xK)‖A ≤ M holds for all the possible

products εφ1(x1) · · · εφK (xK) ∈ N. But we already know that all the elements

εφ1(b1), {εφi(bi)
εφ1

(x1)···εφi−1
(xi−1)}2≤i≤K

are elements of BA(18). Hence (5.8) implies

‖X‖A = ‖εφ1(b1) · [
K∏
i=2

εφi(bi)
εφ1

(x1)···εφi−1
(xi−1)] · [εφ1(x1) · · · εφK (xK)]‖A ≤ 18K +M

and this �nishes the proof.

Having this proposition, we can now prove Theorem 5.3.2:
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Proof. There are two possible cases to consider here. First, the case that char(F) ≥ 3

holds and second that char(F) = 2. The �rst case is a direct consequence of Theorem 5.2.4:

The ring R is local and |R/2R| = 1 holds, because 2 is a unit in R. So let us assume

that char(F) = 2 and let S ⊂ Sp4(R) be a �nite set of normal generators. To prove this

theorem, we will proceed in four steps similar to the proof of Theorem 5.2.4. First, we

will show that there is a natural number K independent of R such that

‖εα+β(1)ε2α+β(1)‖S ≤ K|S|

holds. Second, we will use the second part of Proposition 5.3.3 to bound the normal

subgroup N generated by εα+β(1)ε2α+β(1) with respect to the norm ‖ · ‖S. Third, we will
show that Sp4(R) is boundedly generated by root elements. Fourth, we will conclude from

the �rst part of Proposition 5.3.3 and an argument similar to the proof of Theorem 3.2.5

that Sp4(R) is strongly bounded. Then last, we will conclude the uniform boundedness

of Sp4(R) from the fact that R is a local ring.

For the �rst point, let X ∈ Sp4(R), x ∈ R and i, j distinct elements of {1, . . . , 4} be
given. Then observe that Theorem 3.4.1 and char(R) = 2, implies that

εα+β(y2x2
i,j)ε2α+β(y2x2

i,j) ∈ 〈〈X〉〉.

Using a �rst-order compactness argument similar to the one in the proof of Theorem 3.2.1,

one then proves the existence of a natural number K such that for all y ∈ R and X ∈
Sp4(R), one has

‖εα+β(y2x2
i,j)ε2α+β(y2x2

i,j)‖X ≤ K

for all i, j distinct elements of {1, . . . , 4}. Possibly enlarging K, one can also show for all

y ∈ R and X ∈ Sp4(R), that

‖εα+β(y2(xi,i − xj,j)2)ε2α+β(y2(xi,i − xj,j)2)‖X ≤ K

for all i, j distinct elements of {1, . . . , 4}.
Next, observe that S is a normal generating set and hence Lemma 3.0.3 implies Π(S) =

∅. If there were a maximal idealm containing
∑

X∈S l(X), then πm would map all elements

of X to scalar elements in Sp4(R/m), which are obviously central in Sp4(R/m). But this

would imply m ∈ Π(S) = ∅. This contradiction shows∑
X∈S

l(X) = R.

Thus there are elements

{y(X)
ij , z

(X)
ij }X∈S,1≤i 6=j≤4 ⊂ R
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with

1 = (
∑

1≤i 6=j≤4,X∈S

y
(X)
ij xij) + (

∑
1≤i 6=j≤4,X∈S

z
(X)
ij (xi,i − xj,j)).

But remember that char(R) = 2 and hence Freshman's dream implies

1 = (
∑

1≤i 6=j≤4,X∈S

(y
(X)
ij )2x2

ij) + (
∑

1≤i 6=j≤4,X∈S

(z
(X)
ij )2(xi,i − xj,j)2).

Thus, enlarging K, we obtain

BS (K|S|)) 3[
∏

1≤i 6=j,X∈S

εα+β((y
(X)
ij )2x2

ij)ε2α+β((y
(X)
ij )2x2

ij)]

· [
∏

1≤i 6=j,X∈S

εα+β((z
(X)
ij )2(xii − xjj)2)ε2α+β((z

(X)
ij )2(xii − xjj)2)]

= εα+β((
∑

1≤i 6=j,X∈S

(y
(X)
ij )2x2

ij) + (
∑

1≤i 6=j,X∈S

(z
(X)
ij )2(xii − xjj)2))

· ε2α+β((
∑

1≤i 6=j,X∈S

(y
(X)
ij )2x2

ij) + (
∑

1≤i 6=j,X∈S

(z
(X)
ij )2(xii − xjj)2))

= εα+β(1)ε2α+β(1).

This proves the �rst point. So we obtain

‖εα+β(1)ε2α+β(1)‖S ≤ K|S|.

For the second point, note that the normal subgroup N generated by

A := εα+β(1)ε2α+β(1)

is bounded with respect to the norm ‖ · ‖A according to the second point of Proposi-

tion 5.3.3. Setting L(R) := ‖N‖A, this implies

‖N‖S ≤ ‖N‖A · ‖A‖S ≤ L(R)K|S|.

For the third point, remember that R is local and hence the bounded generation of

Sp4(R) by root elements follows from Proposition 5.2.3.

For the fourth point, observe that according to the �rst point of Proposition 5.3.3,

the normal subgroup N has �nite index in Sp4(R) and Sp4(R) is boundedly generated by

root elements. Hence, if we replace in the proof of Theorem 3.2.5 the subgroup NC2 by

N , we can �nd an M(R) ∈ N such that

‖Sp4(R)‖S ≤M(R) + ‖N‖S
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and hence

‖Sp4(R)‖S ≤M(R) + L(R)K|S|.

Hence Sp4(R) is strongly bounded. To �nish the proof of uniform boundedness, it

su�ces to show that there is a natural number C(R) such that each normal generating

set S of R contains a normally generating subset S ′ with |S ′| ≤ C(R). Note, that a set S

normally generates Sp4(R) precisely if it satis�es the following two conditions:

1. The group N is contained in the normal subgroup 〈〈S〉〉 generated by S and

2. the set S maps to a normal generating set of Sp4(R)/N.

However, the �rst condition is equivalent to εα+β(1)ε2α+β(1) being an element of 〈〈S〉〉.
In the �rst point of the proof, we derived that εα+β(1)ε2α+β(1) is an element of 〈〈S〉〉 solely
from Π(S) = ∅. But R is local and hence has only one maximal ideal. Hence Π(S) = ∅
can only hold, if there is at least one element X(S) ∈ S with Π({X(S)}) = ∅. Hence the
normal subgroup generated by X(S) already contains εα+β(1)ε2α+β(1) and hence N.

For the second condition, observe that Sp4(R)/N is a �nite group according to Propo-

sition 5.3.3. Thus there are only �nitely many normal generating sets of Sp4(R)/N and

consequently there is a natural number C1(R) such that each normal generating set S of

Sp4(R) has a �nite subset S1 with at most C1(R) elements such that S1 ∪ N normally

generates Sp4(R).

But this implies that already S ′ := S1 ∪ {X(S)} normally generates Sp4(R) and that

|S ′| ≤ C1(R) + 1. Hence the proof is �nished.

Remark 5.3.4.

1. The proof is slightly more general than necessary for char(F) = 2, considering

the fact that R is a principal ideal domain and hence one could also use matrix

calculations as in Subsection 4.2 to show the �rst point of the proof of Theorem 5.3.2.

However, we wanted to demonstrate that the �rst point is true for more general rings

of characteristic 2.

2. The ideal I in the proof of Proposition 5.3.3 is commonly called the booleanizing

ideal of R, often denoted by ν2(R), and it can be shown to always have �nite index

in any ring global ring of S-algebraic integers R in a global �eld. Further, the proof

of Theorem 5.3.2 shows that the main problem in proving strong boundedness for

Sp4(R) is not that R might have characteristic 2, but rather whether Sp4(R) is

boundedly generated by root elements or not.
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Chapter 6

Rings of S-algebraic integers and orders

In this chapter, we talk about applications of our results Theorem 3.1.2 and Theorem 3.2.5

to rings of S-algebraic integers. In the �rst section, we prove strong boundedness for rings

R of S-algebraic integers by way of known bounded generation results for G(Φ, R) for

Φ 6= C2 and G2. In the second section, we provide explicit upper bounds for ∆k(G) in

case of G = Sp4(R) in a special case and in the third section, we provide similar bounds

for ∆k(G2(R)). In the fourth and �fth section, we speak about similar results by Morris

[30] and how to interpret them in terms of (strong) boundedness.

6.1 Bounded generation results for rings of S-algebraic

integers

First, recall the de�nition of S-algebraic integers:

De�nition 6.1.1. [32, Chapter I, �11] Let K be a �nite �eld extension of Q. Then let S

be a �nite subset of the set V of all valuations of K such that S contains all archimedean

valuations. Then the ring OS is de�ned as

OS := {a ∈ K| ∀v ∈ V − S : v(a) ≥ 0}

and OS is called the ring of S-algebraic integers in K. Rings of the form OS are called

rings of S-algebraic integers.

Remember the word norm ‖ ·‖EL from De�nition 2.2.2. S-arithmetic Chevalley groups

are boundedly generated by root elements:

Theorem 6.1.2. [42] Let Φ be an irreducible root system of rank at least 2 and R a ring

of S-algebraic integers in a number �eld K. Then G(Φ, R) is boundedly generated by root

elements. More precisely, let K be a number �eld and

∆ := max{|{p| p a prime divisor of discrK|Q}|, 1}
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be given. Then the following inequalities hold:

1. ‖G(Φ, R)‖EL ≤ (68∆ + 14) |Φ|
6

for all Φ simply-laced,

2. ‖G(Φ, R)‖EL ≤ (180∆ + 27) |Φ|
8

for all Φ non-simply-laced not equal to G2 and

3. ‖G2(R)‖EL ≤ 68∆ + 25.

Furthermore, if R is a principal ideal domain or ∆ = 1, then the bounds can be improved

to

1. ‖G(Φ, R)‖EL ≤ 63 |Φ|
6

for all Φ simply-laced

2. ‖G(Φ, R)‖EL ≤ 159 |Φ|
8

for all Φ non-simply-laced not equal to G2 and

3. ‖G2(R)‖EL ≤ 81.

Remark 6.1.3. This is not the bounded generation result as found in [42]. Instead it is

a summary of the result [42, Corollary 4] and [42, Proposition 1] for the �rst batch of

inequalities. The second batch of inequalities comes from applying possible improvements

as appearing in [10] in the principal ideal domain-case and the ∆ = 1-case.

Furthermore, all non-zero ideals I in a ring R of S-algebraic integers have �nite index.

So, rings R of S-algebraic integers in number �elds have the property that G(Φ, R) is

boundedly generated by root elements for all irreducible Φ of rank at least 2 and the

ideal 2R (and all other non-zero ideals) have �nite index in R. Hence Theorem 3.1.2 and

Theorem 3.2.5 can be applied to the groups G(Φ, R). This gives us the following Theorem:

Theorem 6.1.4. Let R be a ring of S-algebraic integers in a number �eld and Φ an

irreducible root system of rank at least 2. Then there is a constant C(Φ, R) ≥ 1 such that

∆k(G(Φ, R)) ≤ C(Φ, R)k

holds for all k ∈ N.

Furthermore, we can give some explicit bounds for strong boundedness as well. To

this end note the following bounded generation result for SL2(R) by Rapinchuk, Morgan

and Sury:

Theorem 6.1.5. [29, Theorem 1.1] Let R be a ring of S-algebraic integers with in�nitely

many units. Then ‖SL2(R)‖EL ≤ 9.

Using this result and Theorem 6.1.2, we can provide some explicit values:
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Corollary 6.1.6. Let R be a ring of S-algebraic integers with class number one and n ≥ 3.

Further set

∆(R) :=

 135, if R is a quadratic imaginary ring of integers or Z

12, if R is neither of the above

Then ∆k(Sp2n(R)) ≤ 192(1 + 5n)(12n+ ∆(R))k holds for all k ∈ N.

Proof. Let k ∈ N be given. Then according to Theorem 3.1.2, the inequality

∆k(Sp2n(R)) ≤ 3Q(Cn, R) · L(Cn)k (6.1)

holds for L(Cn) given as in Theorem 3.1.1 and ‖Sp2n(R)‖ELQ ≤ Q(Cn, R). However,

according to Theorem 4.1.3, we can choose L(Cn) ≤ 64(1 + 5n).

Next, we give upper bounds on ‖Sp4(R)‖ELQ depending on R. First, if R is a quadratic

imaginary ring of integers or Z, we have

‖Sp4(R)‖ELQ ≤ ‖Sp4(R)‖EL ≤ 159.

according to Theorem 6.1.2.

On the other hand, if R is not a ring of quadratic imaginary integers or Z, then R has

in�nitely many units according to [32, Corollary 11.7]. This implies ‖SL2(R)‖EL ≤ 9 for

those rings by Theorem 6.1.5. According to Proposition 5.1.8, this implies

Sp4(R) = (U+(C2, R)U−(C2, R))4U+(C2, R) or Sp4(R) = U−(C2, R)(U+(C2, R)U−(C2, R))4.

But C2 has four positive roots and hence

‖Sp4(R)‖ELQ ≤ ‖Sp4(R)‖EL ≤ 4 ∗ 9 = 36.

holds. Hence setting

∆′(R) :=

 159, if R is a quadratic imaginary ring of integers or Z

36, if R is neither of the above

implies ‖Sp4(R)‖ELQ ≤ ∆′(R) for all rings of S-algebraic integers with class number 1.

Proposition 5.1.10 implies

‖Sp2n(R)‖ELQ ≤ 12(n− 2) + ‖Sp4(R)‖ELQ ≤ 12(n− 2) + ∆′(R).
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But this together with (6.1) and L(Cn) ≤ 64(1 + 5n) implies

∆k(Sp2n(R)) ≤ 3Q(Cn, R) · L(Cn)k ≤ (12n− 24 + ∆′(R)) · 192(5n+ 1)k

and �nishes the proof.

Further, we can show the following:

Theorem 6.1.7. Let R be a ring of S-algebraic integers with class number one. Further

set

∆(R) :=

 154, if R is a quadratic imaginary ring of integers or Z

117, if R is neither of the above

Then ∆k(E6(R)) ≤ 120 · 60211
∆(R)k holds for all k ∈ N.

Proof. Let k ∈ N be given. Then according to Theorem 3.1.2, the inequality

∆k(E6(R)) ≤ Q(E6, R) · L(E6)k (6.2)

holds for L(Cn) given as in Theorem 3.1.1 and ‖E6(R)‖ELQ ≤ Q(E6, R). However, ac-

cording to Proposition 4.4.6, we can choose L(E6) ≤ 120 · 60211
.

Next, we give upper bounds on ‖E6(R)‖ELQ depending on R. To this end note that

Proposition 5.1.7 implies

E6(R) = (U+(E6, R)U−(E6, R))2Gε(R)

Thus for each A ∈ E6(R), there are u+
1 , u

+
2 ∈ U+(E6, R) and u−1 , u

−
2 ∈ U−(E6, R) as well

as Z ∈ Gε(R) such that A = u+
1 u
−
1 u

+
2 u
−
2 Z. This implies

A = u+
1 u
−
1 u

+
2 u
−
2 Z =

(
u+

1 u
−
1 (u+

1 )−1
)
· (u+

1 u
+
2 )u−2 Z = (u−1 )u

+
1 · (u+

1 u
+
2 )u−2 Z

and hence

‖A‖ELQ = ‖(u−1 )u
+
1 · (u+

1 u
+
2 )u−2 Z‖ELQ

≤ ‖(u−1 )u
+
1 ‖ELQ + ‖u+

1 u
+
2 ‖ELQ + ‖u−2 ‖ELQ + ‖Z‖ELQ

= ‖u−1 ‖ELQ + ‖u+
1 u

+
2 ‖ELQ + ‖u−2 ‖ELQ + ‖Z‖ELQ .

But U+(E6, R) and U−(E6, R) are conjugate to one another and A was arbitrary, so this

implies

‖E6(R)‖ELQ ≤ 3‖U+(E6, R)‖ELQ + ‖Gε(R)‖ELQ .

The root system E6 has 36 positive roots as can be for example seen in the proof of

Lemma 4.4.3 in Appendix C and hence ‖U+(E6, R)‖ELQ ≤ 36 holds. On the other hand,
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Gε(R) is a subgroup of the group

H := 〈Gε(R), Gδ(R)〉

The root subsystem of E6 spanned by ε and δ is isomorphic to A2 and SL3(R) is generated

by root elements according to [42, Lemma 4]. Thus one can use Lemma 2.2.4 and [41,

Chapter 8, p. 68, Lemma 49] to show that there is an epimorphism of SL3(R) onto H

with the property

E12(x) 7→ εε(x), E21(x) 7→ ε−ε(x)

E23(x) 7→ εδ(x), E32(x) 7→ ε−δ(x)

for all x ∈ R. Using this epimorphism, the subgroup{(
A

1

)
|A ∈ SL2(R)

}

of SL3(R) maps onto Gε(R). This is to say, that one can give an upper bound on

‖Gε(R)‖ELQ by way of giving an upper bound on ‖SL2(R)‖ELQ when considering SL2(R)

as a subgroup of SL3(R). Now, we distinguish two cases. First, if R is a quadratic imag-

inary ring of integers or Z, then one can see reading the proof of [10, Main Theorem]

that

‖SL2(R)‖ELQ ≤ 56.

On the other hand, if R is not a ring of quadratic imaginary integers or Z, then R has

in�nitely many units according to [32, Corollary 11.7]. This implies ‖SL2(R)‖ELQ ≤ 9 for

those rings by Theorem 6.1.5. Thus setting

∆′(R) :=

 56, if R is a quadratic imaginary ring of integers or Z

9, if R is neither of the above

implies ‖Gε(R)‖ELQ ≤ ∆′(R) and hence

‖E6(R)‖ELQ ≤ 3 ∗ 36 + ∆′(R) = ∆(R)

holds. This together with (6.2) and L(E6) ≤ 120 · 60211
�nishes the proof.

Remark 6.1.8. It is obviously possible to give upper bounds on ‖U+(E6, R)‖ELQ , that are

better than the naive ‖U+(E6, R)‖ELQ ≤ 36. For example, one could consider the roots

that do not involve the simple root φ and the ones that do separately. Then one uses an

argument similar to the SLn(R)-case in Proposition 5.1.10 to give better upper bounds

on the terms not involving φ. However, as the explicit bounds for the E6-case are quite
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bad anyway, we decided against it.

Invoking Theorem 6.1.5 also allows a slight improvement of the upper bound in the

older result in [24, Corollary 6.2]:

Corollary 6.1.9. Let R be a ring of S-algebraic integers with in�nitely many units, n ≥ 3

and k ∈ N. Then
∆k(SLn(R)) ≤ (4n+ 1)(4n+ 4)k

holds.

Remark 6.1.10. The only rings R of S-algebraic integers that have �nitely many units

and are principal ideal domains are Z and the rings of algebraic integers in the quadratic

number �elds Q[
√
D] for D = −1,−2,−3,−7,−11,−19,−43,−67,−163.

6.2 Explicit bounds for Sp4

Let R be a commutative ring with 1 such that (R : 2R) is �nite. In this section G denotes

the group Sp4(R). Recall, that the set of positive roots in C2 is α, β, α + β and 2α + β

with α short and simple and β long and simple. Further, recall the set:

QC2 := {Aεφ(2x)A−1|x ∈ R, φ ∈ C2, A ∈ Sp4(R)}

as well as the group NC2 := 〈QC2〉. Further let π : G→ G/NC2 be the quotient map and

let k be a natural number. Then recall that Theorem 3.2.5 implies:

∆k(Sp4(R)) ≤ L(C2)K(C2, R)k + ∆∞(G/NC2)

where

1. the constant L(C2) is given as in Theorem 4.2.1 or Theorem 3.2.1,

2. the constant K(C2, R) is de�ned to be ‖NC2‖QC2

For principal ideal domains, an upper bound on the constant L(C2) is already known

to us by Theorem 4.2.1. Namely, L(C2) ≤ 384 holds. So to give explicit upper bounds

on ∆k(Sp4(R)), one must give upper bounds on ∆∞(G/NC2) and K(C2, R). Determining

∆∞(G/NC2) is relatively easy, because we only have to determine the maximal possible

diameter of a conjugation generated word norm on some �nite group of Lie-type or direct

products of such. On the other hand, giving an upper bound on K(C2, R), is harder and

we will in fact only do it in a special case.
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6.2.1 Boundedness of the 2-congruence subgroup of Sp4(R)

De�nition 6.2.1. Let R be a commutative ring with 1 such that the set of coset repre-

sentatives X of 2R in R can be chosen in such a way that each x ∈ X − 2R is a unit in

R and 0, 1 ∈ X. Then R is called a 2R-pseudo-good ring.

Remark 6.2.2. If R is 2R-pseudo-good, then either R/2R is a �eld or 2 is a unit in R.

This is the case, because each element x̄ in R/2R − {0} can be written as x̄ = x + 2R

for some x ∈ X a unit. But then x̄ is itself a unit and hence each non-zero element of

R/2R is a unit and so R is a �eld. On the other hand, if R/2R does not have non-zero

elements, than this implies that 1 is an element of 2R.

We note the following characterization for rings of S-algebraic integers in quadratic

number �elds that are 2R-pseudo-good:

Proposition 6.2.3. Let D be a square-free integer, R′ the ring of algebraic integers in

the number �eld Q[
√
D] and S a �nite set of non zero prime ideals in R′. De�ne

R := {a/b| a ∈ R′, b ∈ R′ − {0}, { prime divisors of bR′} ⊂ S}.

Then R is 2R−pseudo-good if and only if at least one of the following conditions hold

1. The set S contains a prime-divisor of 2R or

2. D ≡ 5 mod 8 and D > 0 or

3. D ≡ 5 mod 8 and S 6= ∅ or

4. D = −3.

The proof for this Proposition can be found in Appendix C. Further de�ne for a

2R-pseudo-good ring R with the corresponding set of coset representatives X, the sets

BR := {ε2α+β(x1)εα+β(x2)εβ(x3)εα(x4)hα(t)hβ(s)| t, s ∈ X ∩R∗, x1, x2, x3, x4 ∈ X}

Also recall that the Weyl group W (C2) is generated by the set F := {wα, wβ}. To deter-

mine K(C2, R), we prove the following proposition.

Proposition 6.2.4. Let R be a 2R-pseudo-good ring, w1 = s
(1)
1 · · · s

(1)
k1

and w2 = s
(2)
1 · · · s

(2)
k2

elements of W (C2) with s
(1)
1 , . . . , s

(1)
k1
, s

(2)
1 , . . . , s

(2)
k2

elements of F and lF (w1) = k1 and

lF (w2) = k2. Then up to multiplication by lF (w2) elements of QC2, each element of

(B(C2, R)w1B(C2, R)) · (B(C2, R)w2B(C2, R)) is an element of B(C2, R)wB(C2, R) for

w some subword of the (possibly non-minimal) expression (s
(1)
1 , . . . , s

(1)
k1
, s

(2)
1 , . . . , s

(2)
k2

).
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This proposition gives an upper bound on K(C2, R) as follows in case 2 is not a unit in

R. Note that according to bounded generation by root elements, we can by grouping ele-

ments of U+(C2, R) and U−(C2, R) together and potentially conjugate by w0 := (wαwβ)2,

the longest element in W (C2), �nd a J ∈ N, such that each A ∈ Sp4(R) can be written as

A =
J∏
i=1

u+
i u
−
i

for all u+
i elements of U+(C2, R) and all u−i elements of U−(C2, R). But each element

w−1
0 u−i w0 is a product of root elements of positive roots in C2 and hence an element of

B(C2, R). But then

u+
i u
−
i = (u+

i w0)(w−1
0 u−i w0)w−1

0 ∈ (B(C2, R)w0) · (B(C2, R)w0) ⊂ (B(C2, R)w0B(C2, R))2.

holds for all i. This implies A ∈ (B(C2, R)w0B(C2, R))2J .

But lF (w0) = 4 holds, so according to Proposition 6.2.4, the matrix A can be written as

a product b′1wb
′
2 for b ∈ B(C2, R) and w ∈ W (C2) after multiplication by (2J−1)lF (w0) ≤

4(2J − 1) elements of QC2 . But each element of B(C2, R)wB(C2, R) is conjugate to an

element of B(C2, R)w. Observe that each element A of B(C2, R) has the form

ε2α+β(t2α+β)εα+β(tα+β)εβ(tβ)εα(tα)hα(sα)hβ(sβ)

for t2α+β, tα+β, tβ, tα ∈ R and sα, sβ ∈ R∗. Hence after multiplication with 4 elements

of QC2 , we may assume that t2α+β, tα+β, tβ, tα ∈ R are elements of the set X of coset

representatives of 2R in R instead. Furthermore,

hα(sα) = wα(sα)w−1
α

holds and wα(sα) = εα(sα)ε−α(−s−1
α )εα(sα). Note, that all elements of X − {0} are units

in R and so we can consider the set

Y := {−x−1|x ∈ X − {0}} ∪ {0}.

One easily checks that this set Y is also a set of coset representatives of 2R in R. Thus

after multiplication with 3 elements of QC2 , we may assume that sα is an element of

X − {0}. Similarly, we may assume after multiplication by 3 elements of QC2 that sβ is

an element of X − {0}. So each element of B(C2, R)w agrees with an element of BRw

after multiplication by 4 + 3 + 3 = 10 elements of QC2 .

To summarize: Up to multiplication by up to 4(2J−1)+10 = 8J+6 elements of QC2 ,

each element A of Sp4(R) can be rewritten as an element of BRw for some w ∈ W (C2).
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Next, observe that NC2 is contained in ker(π2R : Sp4(R) → Sp4(R/2R)) := HC2 . We are

going to show that BRw ∩HC2 6= ∅ implies w = I4 and BRw ∩HC2 = {I4}. Together, this
implies

K(C2, R) = ‖NC2‖QC2
≤ 8J + 6.

To show that BRw ∩ HC2 6= ∅ implies w = I4 and BRw ∩ HC2 = {I4}, assume there

is an A = bw ∈ BRw ∩ NC2 for some w ∈ W (C2). Observe that π2R(A) = I4. But

π2R(b) is an element of B(R/2R,C2) of Sp4(R/2R). Further slightly abusing notation, we

obtain π2R(w) = w and hence π2R(A) is an element of B(R/2R,C2)w. But 2 is assumed

to not be a unit in R and so the ring R/2R is a �eld. Hence by the uniqueness of

the Bruhat-decomposition for Sp4(R/2R) [41, Chapter 3, p. 26, Theorem 4'], we obtain

π2R(b) = w = I4. But according to the de�nition of BR and remembering that X is a set

of coset-representatives of 2R in R, this implies b ∈ {hα(t)hβ(s)| t, s ∈ X ∩R∗}. So there

are t, s ∈ X ∩R∗ with

A = hα(t)hβ(s) =


t 0

0 st−1

0 0

0 0

0 0

0 0

t−1 0

0 s−1t


But π2R(A) = I4 and hence t ≡ 1 mod 2R. But 1 ∈ X and so t = 1. Then s = 1 follows

the same way. Hence A = I4. This implies:

Proposition 6.2.5. Let R be a 2R-pseudo-good ring such that 2 is not a unit and let J ∈ N
be given such that each A ∈ Sp4(R) can be written as an element of (U+(C2, R)U−(C2, R))J

or (U−(C2, R)U+(C2, R))J . Then K(C2, R) ≤ 8J + 6 holds.

Further, the proof implies the following:

Corollary 6.2.6. Let R be a 2R-pseudo-good ring of S-algebraic integers. Then NC2 =

ker(π2R : Sp4(R)→ Sp4(R/2R)) holds.

Remark 6.2.7. Milnor's, Serre's and Bass' solution for the Congruence subgroup problem

[6, Theorem 3.6, Corollary 12.5] yields

NC2 = ker (π2R : Sp4(R)→ Sp4(R/2R)) .

more generally for all rings of S-algebraic integers.

To prove Proposition 6.2.4, we need:

Lemma 6.2.8. Let R be a 2R-pseudo-good ring. Then up to multiplication by an element

of QC2, we have

(B(C2, R)wαB(C2, R)) · (B(C2, R)wαB(C2, R)) ⊂ B(C2, R) ∪ (B(C2, R)wαB(C2, R)) .
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The same holds for β instead of α.

Proof. Let b1, b2, b
′
1, b
′
2 ∈ B(C2, R) be given. Note that we may write b2b

′
1 as

b2b
′
1 = εα(a)uP−αh

for a ∈ R, ε2α+β(b)εα+β(c)εβ(d) = uP−{α} for b, c, d ∈ R and h ∈ {hα(t)hβ(s)| t, s ∈ R∗}.
This implies:

b1wαb2b
′
1wαb

′
2 = b1wαεα(a)uP−αhwαb

′
2 = b1ε−α(±a)wα[uP−α(−h)]w−1

α b′2.

Next, wα[uP−α(−h)]w−1
α is an element of B(C2, R), because wαuP−αw−1

α is a product

of root elements associated to positive roots in C2 and wα(−h)w−1
α is an element of

{hα(t)hβ(s)| t, s ∈ R∗} as required. Thus b1wαb2b
′
1wαb

′
2 ∈ B(C2, R)ε−α(±a)B(C2, R)

holds.

There are two possible cases now. Either a is an element of 2R, then we are done

after multiplying with one element of QC2 . On the other hand, if a /∈ 2R holds, then as

R is 2R-pseudo-good, there is a unit x ∈ R such that a ≡ −x−1 mod 2R. Hence after

multiplying with one element of QC2 , we may assume a = −x−1 and so we obtain

ε−α(a) = εα(−x)(εα(x)ε−α(−x−1)εα(x))εα(−x)

= εα(−x)wα(x)εα(−x) = εα(−x)hα(x)wαεα(−x).

But εα(−x)hα(x) and εα(−x) are elements of B(C2, R), so ε−α(a) is an element of

B(C2, R)wαB(C2, R). Hence

b1wαb2b
′
1wαb

′
2 ∈ B(C2, R)ε−α(±a)B(C2, R) ⊂ B(C2, R) · (B(C2, R)wαB(C2, R)) ·B(C2, R)

= B(C2, R)wαB(C2, R)

holds after multiplication with up to one element of QC2 .

Next, we are going to prove the Proposition 6.2.4:

Proof. Slightly abusing notation we set T (w1, w2) := (s
(1)
1 , . . . , s

(1)
k1
, s

(2)
1 , . . . , s

(2)
k2

). We will

show �rst that

(B(C2, R)w1B(C2, R)) · (B(C2, R)w2B(C2, R)) ⊂
⋃

w subword of T (w1,w2)

B(C2, R)wB(C2, R)

holds up to multiplication by lF (w2) elements of QC2 by induction on lF (w2).

For lF (w2) = 0, we obtain B(C2, R)w2B(C2, R) = B(C2, R) and hence the claim is

obvious. So let w2 ∈ W (C2) be given and assume by induction that the claim holds for
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each subword of (s
(2)
1 , . . . , s

(2)
k2

). Further assume that without loss of generality w2 = w′2wα

and lF (w2) = lF (w′2) + 1. Then by induction hypothesis

(B(C2, R)w1B(C2, R)) · (B(C2, R)w2B(C2, R))

= (B(C2, R)w1B(C2, R)) · (B(C2, R)w′2) · (wαB(C2, R))

⊂

 ⋃
w subword of T (w1,w′2)

B(C2, R)wB(C2, R)

 · wαB(C2, R)

=
⋃

w subword of T (w1,w′2)

(B(C2, R)wB(C2, R) · wαB(C2, R))

holds up to multiplication by lF (w′2) elements of Q. Hence it su�ces to show the claim in

the special case w2 = wα. We distinguish two cases: First lF (w1wα) > lF (w1) and second

lF (w1wα) < lF (w1).

In the �rst case, it su�ces to show that w1B(C2, R)wα ⊂ B(C2, R)w1wαB(C2, R). To

see this let

b = εα(a)uP−{α}h ∈ B(C2, R)

be given with a ∈ R, ε2α+β(b)εα+β(c)εβ(d) = uP−{α} for b, c, d ∈ R and h ∈ {hα(t)hβ(s)| t, s ∈
R∗}. Note that

w1εα(a)w−1
1 = εw1(α)(±a).

Yet according to [41, Appendix, p. 151, (19)Lemma], the inequality lF (w1wα) > lF (w1)

implies that the root w1(α) is positive root. Thus w1εα(a)w−1
1 ∈ B(C2, R). On the other

hand, similar to the proof of the previous lemma, w−1
α uP−{α}hwα is also an element of

B(C2, R). Hence we obtain

w1bwα = w1εα(a)uP−{α}hwα = (w1εα(a)w−1
1 )w1wα(w−1

α uP−{α}hwα) ∈ B(C2, R)w1wαB(C2, R).

This �nishes the proof of the �rst case. Note in particular that in the �rst case we need

not multiply by an element of QC2 .

In the second case, we can write w1 = w′1wα for lF (w1) = lF (w′1) + 1 and so

(B(C2, R)w1B(C2, R)) · (B(C2, R)wαB(C2, R))

= (B(C2, R)w′1) · (wαB(C2, R)) · (B(C2, R)wαB(C2, R)).

But according to Lemma 6.2.8, we know that up to multiplication by an element of QC2 ,

we have

(wαB(C2, R)) · (B(C2, R)wαB(C2, R)) ⊂ B(C2, R) ∪ (B(C2, R)wαB(C2, R)).
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Thus up to multiplication by an element of QC2 , we have

(B(C2, R)w1B(C2, R)) · (B(C2, R)wαB(C2, R))

⊂ (B(C2, R)w′1) · [B(C2, R) ∪ (B(C2, R)wαB(C2, R))]

= (B(C2, R)w′1B(C2, R)) ∪ (B(C2, R)w′1B(C2, R)wαB(C2, R)).

But according to the �rst caseB(C2, R)w′1B(C2, R)wαB(C2, R) ⊂ B(C2, R)w′1wαB(C2, R).

This �nishes the second case and the proof of the proposition.

6.2.2 Conjugation generated word norms on Sp4(R/2R)

To determine ∆∞(G/NC2), we will �rst prove:

Lemma 6.2.9. Let K be a �eld of characteristic 2. Then each subset S that normally gen-

erates Sp4(K) contains an element A ∈ S such that A alone normally generates Sp4(K).

This implies ∆∞(Sp4(K)) = ∆1(Sp4(K)).

Proof. Observe that Sp4(K) = PSp4(K), because each scalar matrix in Sp4(K) must be

I4 as char(K) = 2. Next, assume that K 6= F2 and pick a non-trivial element A in the

normal generating subset S of Sp4(K). But as K 6= F2, the group Sp4(K) = PSp4(K) is

simple by [41, Chapter 4, p. 33, Theorem 5] and hence A normally generates Sp4(K).

If K = F2, then Sp4(K) is isomorphic to the permutation group S6 according to

Proposition B.0.1. However S6 only has three normal subgroups, namely S6, A6 and the

trivial subgroup. So for a normal generating set S of Sp4(K) pick an element A ∈ S, not
lying in A6. Then clearly the normal subgroup generated by A must be the entire group

S6 = Sp4(K).

So for each normal generating set S of Sp4(K) there is an AS ∈ S that normally

generates Sp4(K). This implies:

∆∞(Sp4(K)) ≥ ∆1(Sp4(K)) ≥ sup{‖Sp4(K)‖AS | S normally generates Sp4(K)}

≥ sup{‖Sp4(K)‖S| S normally generates Sp4(K)}

= ∆∞(Sp4(K)).

However ∆1(G) is an invariant of a group closely related to the classical notion of

covering numbers of �nite groups. The invariant

cn(G) := min{n ∈ N|∀ conjugacy classes C of G : Cn = G}.

is the covering number of the group G. Now clearly, ∆1(G) ≤ cn(G) holds. In most cases

we are interested in, one actually has equality between the two numbers.
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Proposition 6.2.10. Let K be a �eld of characteristic 2. Then

1. ∆∞(Sp4(F2)) = 5,

2. ∆∞(Sp4(F4)) = 4 and

3. ∆∞(Sp4(K)) ≤ 104 holds for |K| ≥ 8.

Proof. As mentioned in the proof of Lemma 6.2.9 the group Sp4(F2) is isomorphic to S6.

However for S6 the covering number can be determined to be 5 from the main result in [7].

Further, Proposition B.0.3 implies that the conjugation generated word metric induced

by the transposition (12) in S6 has diameter 5. Hence ∆∞(Sp4(F2)) = 5. This proves

the �rst claim of the proposition. The paper [23] contains a list of covering numbers

calculated using a computer algebra system and states on page 61 that cn(Sp4(F4)) = 4.

This yields ∆∞(Sp4(F4)) ≤ 4. The lower bound ∆∞(Sp4(K)) ≥ 4 is a consequence of

Proposition 7.1.3. This proves the second claim of the proposition. The third and last

statement is a consequence of Liebeck's and Lawther's [25, Theorem 1], which implies in

our terminology for q a power of 2, that ∆∞(Sp4(Fq)) = ∆1(Sp4(Fq)) ≤ 8(5∗2+3) = 104.

Then Lemma 6.2.9 yields the last claim of the lemma.

Remark 6.2.11. To our knowledge, nobody calculated the covering numbers of Sp4(K) for

general �nite �elds. However, we suspect that cn(Sp4(K)) = 4 holds for all �nite �elds

with at least 4 elements and as mentioned, Proposition 7.1.3 implies ∆∞(Sp4(K)) ≥ 4.

Next, we can give an explicit upper bound for ∆k(Sp4(R)) in some cases:

Theorem 6.2.12. Let R be a ring of S-algebraic integers such that R is a principal ideal

domain and 2R-pseudo-good with R 6= Z[1+
√
−3

2
],Z. Then for all k ∈ N one has:

1. ∆k(Sp4(R)) ≤ 5 + 17644k, if (R : 2R) = 2.

2. ∆k(Sp4(R)) ≤ 4 + 17644k, if (R : 2R) = 4.

3. ∆k(Sp4(R)) ≤ 104 + 17644k, if (R : 2R) ≥ 8.

4. ∆k(Sp4(R)) ≤ 13824k, if (R : 2R) = 1.

Proof. Using Dirichlet's Unit Theorem [32, Corollary 11.7], one can see that every ring

of S-algebraic integers, except rings of imaginary quadratic integers and Z have in�nitely

many units. Consequently, according to Proposition 6.2.3, all 2R-pseudo-good rings R as

in the theorem have in�nitely many units. Thus Theorem 6.1.5, Proposition 5.1.8 and

the fact that Sp4(R) = E(C2, R) holds, implies that

Sp4(R) = (U+(C2, R)U−(C2, R))4U+(C2, R) or Sp4(R) = (U−(C2, R)U+(C2, R))4U−(C2, R)

149



Consequently, we can assume J = 5 in Proposition 6.2.5 and so

K(C2, R) ≤ 6 + 8 ∗ 5 = 46

holds, if R 6= 2R. However, if R = 2R, then clearly K(C2, R) ≤ 36 holds. Next, we know

from Theorem 4.2.1, that L(C2) ≤ 384, as R is a principal ideal domain. Furthermore,

Corollary 6.2.6 implies

NC2 = ker (π2R : Sp4(R)→ Sp4(R/2R)) .

This implies that G/NC2 = Sp4(R/2R) and so Proposition 6.2.10 implies

1. ∆∞(G/NC2) = 5, if (R : 2R) = 2.

2. ∆∞(G/NC2) = 4, if (R : 2R) = 4.

3. ∆∞(G/NC2) ≤ 104, if (R : 2R) ≥ 8.

Further ∆∞(G/NC2) = 0, clearly holds in case of (R : 2R) = 1. Combining these facts

with the following inequality from Theorem 3.2.1:

∆k(Sp4(R)) ≤ L(C2)K(C2, R)k + ∆∞(G/NC2)

for k ∈ N yields the claim of the theorem.

We �nish this subsection by giving bounds in the two omitted cases:

Proposition 6.2.13. For all k ∈ N, one has

1. ∆k(Sp4(Z)) ≤ 5 + 248064k.

2. ∆k

(
Sp4(Z[1+

√
−3

2
])
)
≤ 4 + 248064k.

Proof. Both of these rings are 2R-pseudo-good. This is obvious for Z by considering the

set of representatives {0, 1} and follows for Z[1+
√
−3

2
] from Proposition 6.2.3. Furthermore,

both Z and Z[1+
√
−3

2
] are principal ideal domains. Again, this is well-known for Z and

can be seen for Z[1+
√
−3

2
] by way of using the norm map

NQ[
√
−3]|Q : Z

[
1 +
√
−3

2

]
→ Z

to show that Z[1+
√
−3

2
] is an euclidean domain. Also Theorem 6.1.2 implies for both

rings R that J in Proposition 6.2.5 can be chosen as 80. So Proposition 6.2.5 implies

K(C2, R) ≤ 6 + 8 ∗ 80 = 646. Lastly, Proposition 6.2.10 implies

1. ∆∞ (Sp4(Z)/NC2) = ∆∞(Sp4(F2)) = 5.
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2. ∆∞

(
Sp4(Z[1+

√
−3

2
])/NC2

)
= ∆∞ (Sp4(F4)) = 4.

This yields the proposition in the same way as in the proof of Theorem 6.2.12.

6.3 Explicit bounds for G2

In this section, we will explain how to give explicit values for G := G2(R) for R certain

rings of algebraic integers. The strategy is similar to the one for Sp4(R). Recall that the

positive roots ing G2 are α, β, α + β, 2α + β, 3α + β and 3α + 2β for α short and simple

and β long and simple. Further, recall:

QG2 :={Aεφ(2x)A−1|x ∈ R, φ ∈ G2 short, A ∈ G2(R)}

∪ {Aεφ(x)A−1|x ∈ R, φ ∈ G2 long, A ∈ G2(R)}

as well as the group NG2 := 〈QG2〉. Further let π : G → G/NG2 be the quotient map.

Then from Theorem 3.2.5 for G2(R), one notes for k ∈ N that:

∆k(G2(R)) ≤ 6K(G2, R)L(G2)k + ∆∞(G/NG2)

where

1. the constant L(G2) is given as in Theorem 3.2.2 and Proposition 4.5.7,

2. the constant K(R,G2) is de�ned to be ‖NG2‖QG2
.

However, in contrast to the situation for Sp4(R), the group NG2 is already the entire group

G2(R) in a lot of cases and this implies ∆∞(G/NG2) = 0 and K(R,G2) = ‖G2(R)‖QG2

then. First, we will show the following useful lemma:

Lemma 6.3.1. Let R be a ring of S-algebraic integers with R/2R = F2. Then there is an

epimorphism q : G2(R)/NG2 → F2 with

q(εφ(a)NG2) =

a+ 2R, if φ ∈ G2 short

0, if φ ∈ G2 long

Proof. First, observe that there is an epimorphism

p′ : G2(F2)→ F2

with

p′(εφ(a)) =

a, if φ ∈ G2 short

0, if φ ∈ G2 long
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for φ ∈ G2 and a ∈ F2. This can be seen as follows: The group G2(F2) is generated by

the root elements εφ(1) of order 2 for φ ∈ G2 and according to [41, Chapter 6, p. 43,

Theorem 8(b)], the fact that root elements have order 2 and the following relations on

the root elements of G2(F2) already give a �nite presentation for the group G2(F2):

(εφ(1), εψ(1)) = εψ+φ(1)ε2ψ+φ(1)ε3ψ+φ(1)ε3ψ+2φ(1), if φ+ ψ ∈ G2 and φ long and ψ short,

(εφ(1), εψ(1)) = εφ+ψ(1), if φ+ ψ ∈ G2 is long

(εφ(1), εψ(1)) = ε2φ+ψ(1)εφ+2ψ(1), if φ+ ψ ∈ G2 and φ+ ψ, φ, ψ short.

However, the map p′ de�ned as above on the root elements εφ(a) respects these relations

and so p′ extends to a group homomorphism p′ : G2(F2) → F2 as required and this p′ is

obviously surjective. Hence, there is an epimorphism

p : G2(R)→ G2(R/2R) = G2(F2)→ F2

with

p(εφ(a)) =

a+ 2R, if φ ∈ G2 short

0, if φ ∈ G2 long
(6.3)

for φ ∈ G2 and a ∈ R. Thus to obtain an epimorphism

q : G2(R)/NG2 → F2

it su�ces to show that p(NG2) = 0 and so it su�ces to show p(QG2) = 0. However, this

is obvious due to (6.3).

Then we obtain:

Proposition 6.3.2. Let R be a 2R−pseudo-good ring and let n ∈ N be given such that

‖G2(R)‖EL ≤ n holds.

1. If |R/2R| ≥ 4, then K(G2, R) ≤ 9n and G2(R) = NG2 .

2. If |R/2R| = 0, then K(G2, R) ≤ n and G2(R) = NG2 .

3. If R/2R = F2, then K(G2, R) ≤ 12n+ 1.

Proof. For the �rst claim of the lemma, it su�ces to show that

εφ(x) ∈ NG2 and ‖εφ(x)‖QG2
≤ 9

for all φ ∈ G2 and x ∈ R. First, observe that this is obvious for φ ∈ G2 long, so we

may assume that φ ∈ G2 is short. Furthermore, we can assume after conjugation by
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appropriate Weyl-group elements that φ = α. Observe that K := R/2R has at least four

elements. So K contains an element t̄ such that neither t̄ nor t̄ − 1 are trivial, because

otherwise K would only have two elements. Then as R is 2R−pseudo-good, we can pick

a unit x ∈ R with x + 2R = t̄ + 1 and an element y ∈ R with y + 2R = t̄−1. Further let

z ∈ R be arbitrary. This implies

(hβ(x−1), εα(yz)) = hβ(x−1)εα(yz)hβ(x−1)−1εα(−yz) = εα(xyz)εα(−yz) = εα((x− 1)yz).

But by de�nition of x and y, we obtain (x − 1)y − 1 ∈ 2R. Hence there is a u ∈ R such

that (hβ(x−1), εα(yz)) = εα(z)εα(2u). However, observe that hβ(x−1) is an element of NG2

and

‖hβ(x−1)‖QG2
= ‖εβ(x−1)ε−β(−x)εβ(x−1)εβ(−1)ε−β(1)εβ(−1)‖QG2

= ‖εβ(x−1 − 1)ε−β(−x)εβ(x−1 − 1)ε−β(1)‖QG2
≤ 4.

Thus, we can conclude that

‖εα(z)‖QG2
= ‖(hβ(x−1), εα(yz))εα(−2u)‖QG2

≤ 2 ∗ 4 + 1 = 9.

The second claim of the lemma is obvious, because if R/2R is trivial, then 2 ∈ R is a

unit and hence not only are εφ(x) for x ∈ R and φ ∈ G2 long elements of QG2 , but also

εφ(x) = εφ(2(x/2)) for x ∈ R and φ short.

For the third and last claim of the lemma, we will �rst show that each element of

εφ(R) for φ ∈ G2 agrees with an element of εα(R) after multiplication with at most 12n

elements of QG2 . This is obvious if φ is long, because then εφ(R) ⊂ QG2 holds. So let

φ ∈ G2 be short and a ∈ R be given and consider εφ(a). Assume �rst, that φ is positive

and consider the case φ = α + β. Then observe that wβεα+β(a)w−1
β = εα(±a). But

wβ = εβ(1)ε−β(−1)εβ(1) ∼ εβ(2)ε−β(−1)

and hence ‖wβ‖QG2
≤ 2 and ‖w−1

β ‖QG2
≤ 2 hold. Hence εα+β(a) agrees with an element

of εα(R) after multiplication with up to 4 elements of QG2 . Second, consider the case

φ = 2α + β. Observe that

(εβ(a), εα(1)) = εα+β(±a)ε2α+β(±a)ε3α+β(±a)ε3α+2β(±a2).

Observe that ‖(εβ(a), εα(1))‖QG2
≤ 2 as well as ‖ε3α+β(±a)εα+β(±a2)‖QG2

≤ 2. This

implies that

ε2α+β(±a) ·
(
ε3α+β(±a)ε3α+2β(±a2) (εβ(a), εα(1))−1) = εα+β(±a)
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and so ε2α+β(±a) agrees with an element of εα+β(R) after multiplication of up to 4 ele-

ments of QG2 and hence using the �rst case with an element of εα(R) after multiplication

with up to 8 = 4 + 4 elements of QG2 .

Next, assume that φ is negative and short. First, assume that φ = −α− β. Similar to

the case of φ = 2α + β, we need 8 elements of QG2 to turn

εα(±a) = wαε−α(a)w−1
α

into the element

ε−α−β(±a) = wαε−2α−β(±a)w−1
α .

In the case of φ = −α one needs another 4 elements of QG2 to turn ε−α−β(±a) into

ε−α(±a). So in total one needs 12 = 8 + 4 elements of QG2 to turn ε−α(a) into an element

of εα(R).

For φ = −2α − β, one needs 4 elements of QG2 to turn an element of ε−2α−β(R) into

an element of ε−α−β(R) and one needs another 8 elements of QG2 to turn an element of

ε−α−β(R) into an element of εα(R). Hence in total, one needs 12 element of QG2 to turn

an element of ε−2α−β(R) into an element of εα(R). To summarize, one needs at most 12

elements of QG2 to turn an element of εφ(R) for φ ∈ G2 into an element of εα(R).

To �nish the proof of the third claim let A ∈ NG2 be given and choose φ1, . . . , φn ∈ G2

and a1, . . . , an ∈ R with

A =
n∏
i=1

εφi(ai).

This implies that up to multiplication with 12n elements of QG2 , the element A is an

element of εα(R). Hence there is a b ∈ R with

‖Aεα(−b)‖QG2
≤ 12n.

However, A is an element of NG2 and so εα(b) is an element of NG2 as well. Yet, according

to Lemma 6.3.1, this implies that b ∈ 2R and hence εα(b) is an element of QG2 . Thus

‖A‖QG2
≤ 12n+ 1.

Remark 6.3.3. Further K(R,G2) ≤ 12n + r(R) holds, if the ideal 2R in R factorizes as

follows:

2R = P1 · · · Pr(R)

withR/Pi = F2 for all i ∈ {1, . . . , r(R)}. This can be shown by following the proof strategy
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of the last part in Proposition 6.3.2 and �nishing with the existence of an epimorphism

q : G2(R)/NG2 → Fr(R)
2 with

p(εφ(a)NG2) =

(a+ P1, . . . , a+ Pr), if φ ∈ G2 short

0, if φ ∈ G2 long
(6.4)

Next, observe the following:

Corollary 6.3.4. Let R be a 2R-pseudo-good ring.

1. If R/2R = F2, then G2(R)/NG2 = F2 and so ∆∞(G2(R)/NG2) = 1.

2. If |R/2R| ≥ 4 or |R/2R| = 0 then G2(R)/NG2 is trivial and so ∆∞(G2(R)/NG2) = 0.

We are in place now to give an explicit upper bound for ∆k(G2(R)) in some cases:

Theorem 6.3.5. Let R be a ring of S-algebraic integers such that R is a principal ideal

domain and 2R-pseudo-good with R 6= Z[1+
√
−3

2
],Z. Then for all k ∈ N one has:

1. ∆k(G2(R)) ≤ 41007264768k, if |R/2R| ≥ 4.

2. ∆k(G2(R)) ≤ 4556362752k, if |R/2R| = 0.

3. ∆k(G2(R)) ≤ 54760730112k + 1, if R/2R = F2.

Proof. Similar to the proof of Theorem 6.2.12 each element of G2(R) can be written as a

product of 54 = 9 ∗ 6 = 9 ∗ |G+
2 | root elements. Thus Proposition 6.3.2 implies

1. K(G2, R) ≤ 9 ∗ 54 = 486, if |R/2R| ≥ 4.

2. K(G2, R) ≤ 54, if |R/2R| = 0.

3. K(G2, R) ≤ 12 ∗ 54 + 1 = 649, if R/2R = F2.

Further, Corollary 6.3.4 implies:

1. If R/2R = F2, then ∆∞(G2(R)/NG2) = 1.

2. If |R/2R| ≥ 4 or |R/2R| = 1 then ∆∞(G2(R)/NG2) = 0.

Together with the result

L(G2) ≤ 14062848

from Proposition 4.5.7, the theorem follows from the inequality

∆k(G2(R)) ≤ 6K(G2, R)L(G2)k + ∆∞(G/NG2)

from Theorem 3.2.5.
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We �nish this subsection by giving bounds in the two cases omitted above:

Proposition 6.3.6. For all k ∈ N, one has

1. ∆k(G2(Z)) ≤ 82098906624k + 1 and

2. ∆k(G2(Z[1+
√
−3

2
])) ≤ 61510897152k.

Proof. We already know that both of the rings are 2R-pseudo-good and principal ideal

domains. Hence Theorem 6.1.2 implies for both rings R that each element of G2(R) can

be written as a product of 81 root elements. So Proposition 6.3.2 implies, as Z/2Z = F2

and Z[1+
√
−3

2
]/2Z[1+

√
−3

2
] = F4 hold, that

1. K(G2,Z) ≤ 12 ∗ 81 + 1 = 973 and

2. K(G2,Z[1+
√
−3

2
]) ≤ 9 ∗ 81 = 729.

Lastly, Proposition 6.2.10 implies

1. ∆∞(G2(Z)/NG2) = 1.

2. ∆∞(G2(Z[1+
√
−3

2
])/NG2) = 0.

This yields the proposition together with L(G2) ≤ 14062848 from Proposition 4.5.7 in the

same way as in the proof of Theorem 6.3.5.

6.4 Orders in rings of algebraic integers

In this section, we talk about orders in rings of algebraic integers and Morris' results in [30]

and how to use them to get strong boundedness results. We do not de�ne orders precisely,

but they are subrings of rings of algebraic integers that are also sublattices of the same

ring of algebraic integers. The classical non-trivial example is Z[2i] = {a + 2bi|a, b ∈ Z}.
Further, de�ne for a subset X of SLn(R) the level ideal l(X) as the sum of all level ideals

l(A) for A ∈ X.
First, there is the following result by Morris that is very similar to our results, however

wrong as stated.

Theorem 6.4.1. [30, Theorem 6.1(1), Remark 6.2] Let B be an order in a ring of alge-

braic integers and S a multiplicative set in B − {0}. Further assume either that n ≥ 3

or that S−1B has in�nitely many units. Also let X be a subset of G := SLn(S−1B),

that is normalized by root elements and that does not consist entirely of scalar matrices.

Then X boundedly generates a �nite index subgroup N of SLn(S−1B) with a bound on

the maximal length of a word in elements of X that depends on n, the degree [K : Q], the

minimal numbers of generators of the level ideal l(N) and the cardinality of S−1B/l(N). If

X := {gsg−1|s ∈ S, g ∈ SL(S−1B)} for a �nite set S with at least one non-scalar element,

then the minimal number of generators of l(N) is smaller than n2|S|.
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As mentioned, this theorem is false as stated and we want to talk brie�y about the

error and how to interpret this theorem in the context of boundedness-considerations:

1. A dependence that Morris does not mention is that the bounded generation ofN also

depends on a �rst order description of the set X. The existence of this dependence

can be seen as follows: IfX is a �nite collection of, say k, conjugacy classes in SLn(R)

generating SLn(R), then none of the numbers mentioned in the theorem depend on

k. Hence, SLn(R) would be uniformly bounded. However, Corollary 7.1.7 shows

that this is not the case. But adding this dependence on a �rst order description of

X, Theorem 6.4.1 is correct.

2. We do not want to explain in detail how the dependence on a �rst order character-

ization of X arises in Morris' proof. Crucial to our investigation however is the fact

that X being a collection of at most k many conjugacy classes generating SLn(R) is

a �rst order property. This holds because A1, . . . , Ak ∈ SLn(R) normally generating

SLn(R) is equivalent to the �rst-order condition Π({A1, . . . , Ak}) = ∅ according to

Corollary 3.2.8.

3. In particular, the bounded generation result for SLn(R) by k conjugacy classes

obtained from the corrected Theorem 6.4.1 depends on k, but not on the particular

classes themselves. Phrased in this way, this establishes that SLn(S−1B) is strongly

bounded. The main di�erence to our result, is that Morris has no control on the

actual value of ∆k(SLn(R)), whereas we can establish that the dependence is at

least linear in k. Structurally, the main reason for this di�erence is that Morris

applies a �rst order compactness result to an entire set of generators to establish

bounded generation. We, on the other hand, study the normal subgroup generated

by a particular given element A of the group G(Φ, R) to obtain root elements with

arguments lying in its level ideal l(A) and only later consider the full generating set.

Morris [30, Theorem 5.26] proves bounded generation by root elements for the sub-

group E(A1, R) of SL2(R) also in the case that R is only a localization of an order, if

said localization has in�nitely many units. He further demonstrates that the elementary

subgroup E(A2, R) of SL3(R) is boundedly generated by root elements for R a localization

of an order [30, Corollary 3.13]. Thus using Corollary 5.1.8 and modifying the proof of

Theorem 3.1.2 and Theorem 3.2.5 in the same manner as we did to prove Theorem 5.2.9,

one shows:

Proposition 6.4.2. Let R be a localization of an order in a ring of algebraic integers

and Φ an irreducible root system of rank at least 2. Assume further that R has in�nitely

many units in case Φ is not simply-laced. There is a constant C(Φ, R) such that

∆k(E(Φ, R)) ≤ C(Φ, R)k
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holds for all k ∈ N.

6.5 Boundedness of SL2(R) for rings with in�nitely many

units

We will be talking shortly about SL2(R) in this section. Reading Morris' paper, especially

the aforementioned Theorem 6.4.1, seems to imply that the boundedness properties for

SL2(R) for R a localization of an order with in�nitely many units might be the same as

for SLn(R) for n ≥ 3. So one could believe that Morris proved:

Conjecture 6.5.1. Let R be a ring of S-algebraic integers with in�nitely many units.

Then SL2(R) is strongly bounded.

We believe this to be true, but Morris did not prove it. The problem is the requirement

mentioned in Section 6.4 to give a �rst-order description of the property of a collection

of k conjugacy classes to normally generate SL2(R). In contrast to the case n ≥ 3, no

such characterization is known to us. For example Π(S) = ∅ does not su�ce to prove

that S ⊂ SL2(R) normally generates SL2(R): The ring R = Z[1+
√

17
2

] is a counter-

example. It has in�nitely many units according to [32, Corollary 11.7] and the element

A = I2 + e12 ∈ SL2(R) satis�es Π({A}) = ∅. However,the ideal 2R factors in R as

2R = P1 · P2 for

P1 =

(
3 +
√

17

2

)
and P2 =

(
3−
√

17

2

)
with P1 6= P2 and R/P1 = R/P2 = F2, which implies that there is an epimorphism

SL2(R)→ SL2(R/P1)× SL2(R/P2) = SL2(F2)2.

But the group SL2(F2) is isomorphic to the permutation group S3, which can be seen from

the fact that SL2(F2) operates on the three non-zero vectors of F2
2. But then composing

with the sign epimorphism S3 → F2 yields an epimorphism q : SL2(R)→ F2
2 and as F2

2 is

abelian, the element A could only normally generate SL2(R), if q(A) would generate F2
2,

which is obviously impossible.

However, a �nite collection of conjugacy classes X generating SL2(R) cannot be en-

tirely scalar and this is a �rst order property. Further, G(A1, R) = E(A1, R) holds

according to Theorem 6.1.5. So a suitably adjusted version of Theorem 6.4.1 yields that

X boundedly generates SL2(R) with the bound depending on X. Hence one obtains:

Proposition 6.5.2. Let R be a ring of S-algebraic integers with in�nitely many units.

Then SL2(R) is bounded.
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Chapter 7

Finite normal generating sets in

Chevalley groups

In the previous chapters and theorems, we proved upper bounds on the diameter of

conjugation generated word norms on split Chevalley groups G(Φ, R) for R a ring of S-

algebraic integers. Also these bounds are linear in the number of conjugacy classes in the

corresponding generating set. In this chapter, we show that this linearity is sharp in the

sense, that for almost all k ∈ N, there are �nite normal generating sets Sk with

‖G(Φ, R)‖Sk ≥ 2k

and |Sk| = k. So in general, linear bounds in the cardinality of the normal generating

sets are the best possible. The dichotomy between G2, C2 and the other Φ persists here.

Namely, for Φ = C2 or G2 such lower bounds depend strongly on the ring R.

In the �rst section, we speak about root systems Φ of high rank and demonstrate the

existence of normal generating sets with better lower bounds in some cases. In the second

section, we speak about �nite normal generating sets of Sp4(R) and G2(R) for R rings of

algebraic integers. It will turn out that the existence of these sets is restricted by number

theoretic properties of R.

7.1 Conjugacy classes in �nite groups of Lie type and

lower bounds in the higher rank cases

In this section, we give lower bounds on ∆k(G(Φ, R)) for Φ an irreducible root system of

rank at least 2 not equal to C2 or G2. In order to do this, we will �rst give lower bounds

on conjugation-generated norms on words norms de�ned over �elds and then apply those

lower bounds to obtain lower bounds for G(Φ, R).

First, we need the following statement:
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Lemma 7.1.1. Let K be a �eld, Φ an irreducible root system of rank at least 2, φ a root

in Φ and t ∈ K not-zero. If Φ = G2, then assume further that φ is short. Then E := εφ(t)

normally generates G(Φ, K) and ‖G(Φ, K)‖E ≥ 2 holds.

Proof. We will show �rst that E normally generates G(Φ, R). Every �eld is semi-local

and hence according to Proposition 5.2.2, the group G(Φ, K) is boundedly generated by

root elements. Hence it su�ces to show the conditions of Corollary 3.2.8 for {E} to

prove that E normally generates G(Φ, K). If Φ 6= C2 or G2, then, we are reduced to

satisfying the condition Π({E}) = ∅ and this condition is satis�ed, because t 6= 0. Hence

the only remaining case is Φ = C2 or G2. Regarding Sp4(K) : If φ is long, then using

Lemma 3.4.2(2), one obtains that the normal subgroup N generated by E, also contains

εα(t) for α the simple, positive, short root in C2. So we may assume φ = α. Then the

normal subgroup N generated by E = εα(t) also contains

εα(s) = εα(st−1t) = hβ(s−1t)εα(t)hβ(s−1t)−1

for all s ∈ K − {0}. Hence N contains all root elements for εψ(x) for ψ ∈ C2 short and

x ∈ K. Thus according to Lemma 3.4.2(3), the normal subgroup N also contains all root

elements εψ(x) for ψ ∈ C2 long and x ∈ K. Hence N contains all root elements of Sp4(K)

and hence N = Sp4(K) holds according to Proposition 5.2.2. Similarly, for G2(K), one

can show that the normal subgroup generated by E contains all root elements εψ(x) for

ψ ∈ G2 short and x ∈ K. Then Lemma 3.5.4(2) implies that N contains all root elements

εψ(x) for ψ ∈ G2 long and x ∈ K. Thus N contains all root elements of G2(K) and hence

N = G2(K) holds according to Proposition 5.2.2. Thus E generates G(Φ, R) in all cases.

To �nish the proof, it su�ces to show that ‖G(Φ, K)‖εφ(t) ≤ 1 is not true. If it were,

then each element in G(Φ, K) would be conjugate to either εφ(t) or εφ(−t). But if K̄

is the algebraic closure of K, then this would imply that each element of the subgroup

G(Φ, K) of G(Φ, K̄) would be unipotent in the linear algebraic group G(Φ, K̄). However,

if K is not the �eld F2, then for some simple root φ ∈ Φ and s 6= 0, 1, the element hφ(s)

is not unipotent. This resolves the case K 6= F2.

If K = F2 holds and if each element in G(Φ, K) is conjugate to εφ(1) = εφ(t) = εφ(−t),
then each element in G(Φ, K) would have the same order as εφ(1), that is char(K) = 2.

However, as F2 = K holds, the Weyl group W (Φ) is actually a subgroup of G(Φ, R)

according to [41, Chapter 3, p.24, Lemma 22]. But each Weyl group W (Φ) has one of the

following groups as subgroups:

W (A2) ∼= S3,W (C2) ∼= D4 or W (G2) ∼= D6.

But clearly all three groups S3, D4 and D6 contain elements of orders di�erent than 2 and
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this contradiction �nishes the proof.

Remark 7.1.2. The condition that φ is short is necessary in the case of Φ = G2, because

for φ a long root in G2 the element εφ(1) ∈ G2(F2) is contained in the kernel of the

epimorphism q : G2(F2) → F2 from Lemma 7.2.4 and hence cannot possibly normally

generate a larger group than this kernel.

Second, we need the following:

Proposition 7.1.3. Let K be a �eld, t ∈ K − {0}.

1. For n ≥ 2 and φ ∈ An, the element E := εφ(t) normally generates G(An, K) and

‖G(An, K)‖E ≥ n+ 1.

2. For n ≥ 3 and φ ∈ Bn, the element E := εφ(t) normally generates G(Bn, K) and

‖G(Bn, K)‖E ≥ n+ 1.

3. For n ≥ 2 and φ ∈ Cn long, the element E := εφ(t) normally generates G(Cn, K)

and ‖G(Cn, K)‖E ≥ 2n.

4. For n ≥ 4 and φ ∈ Dn, the element E := εφ(t) normally generates G(Dn, K) and

‖G(Dn, K)‖E ≥ n.

Proof. That E normally generates G(Φ, K) is clear in all cases from Lemma 7.1.1. We

only do the rest of the proof for G(Cn, K) = Sp2n(K), because the proofs are very similar

in all cases. Note that using the conventions from Section 4.1, we can (possibly after

conjugation with Weyl group elements) assume E = I2n + te1,n+1. We de�ne the subspace

I(l) := {v ∈ K2n|l(v) = v}.

for a linear map l : K2n → K2n. We prove next that for l1, l2 : K2n → K2n, one has

dimk(I(l1l2)) ≥ dimk(I(l1)) + dimk(I(l2))− 2n. (7.1)

To see this, observe �rst that I(l1) ∩ I(l2) ⊂ I(l1l2) and hence

dimK(I(l1l2)) ≥ dimK(I(l1) ∩ I(l2)) = dimK(I(l1)) + dimK(I(l2))− dimK(〈I(l1), I(l2)〉)

≥ dimK(I(l1)) + dimK(I(l2))− 2n.

Observe that the linear map E : K2n → K2n induced by E has

I(E−1) = I(E) = Ke1 ⊕ · · · ⊕Ken ⊕Ken+2 ⊕ · · · ⊕Ke2n.
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Hence dimKI(E) = 2n − 1 = dimKI(E−1) holds. Note further for X ∈ K2n×2n, A ∈
GL2n(K) and v ∈ K2n, that the following holds:

v ∈ I(X) precisely if Av ∈ I(AXA−1).

Hence I(AXA−1) = AI(X) holds and thus dimKI(X) = dimKI(AXA−1). Hence for each

conjugate X of E or E−1 in Sp2n(K), one has dimK(I(X)) = 2n−1. Next, let X1, . . . , Xk

be either conjugates of E or E−1 in Sp2n(K) or I2n. Then one can show by induction on

k ∈ N that dimK(I(X1 · · ·Xk)) ≥ 2n− k.
First, this claim is clear for k = 1. For the induction step, observe for k > 1 that

applying (7.1) implies:

dimK(I(X1 · · ·Xk−1Xk)) ≥ dimK(I(X1 · · ·Xk−1)) + dimK(I(Xk))− 2n

≥ dimK(I(X1 · · ·Xk−1)) + 2n− 1− 2n

= dimK(I(X1 · · ·Xk−1))− 1 ≥ 2n− (k − 1)− 1 = 2n− k.

This implies in particular that for each A ∈ BE(2n−1) there is a non-trivial vector v(A) ∈
K2n �xed by A. Hence each element of BE(2n− 1) has eigenvalue 1. So if ‖Sp2n(K)‖E ≤
2n−1 or equivalently BE(2n−1) = Sp2n(K) were to hold, then each element A ∈ Sp2n(K)

would have eigenvalue 1. Thus it su�ces to give an element A ∈ Sp2n(K) without the

eigenvalue 1 to �nish the proof. To this end, observe that for B ∈ SLn(K), the matrix

A =

 B 0n

0n B−T


is an element of Sp2n(R) with characteristic polynomial

χA(x) = χB(x)χB−T (x) = χB(x)χB−1(x).

But this implies that A has eigenvalue 1 precisely if either B or B−1 has eigenvalue 1.

Yet B−1 has eigenvalue 1 precisely if B does. Thus it su�ces to provide an element

B ∈ SLn(K) without eigenvalue 1 to �nish the proof. If n = 2m is even for m ≥ 1, then

consider for B a block-diagonal matrix of the form

B =


C

C

·
C


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with the block C equal to the 2× 2-matrix

C :=

(
1 1

−1 0

)

Observe that this implies for the characteristic polynomial

χB(x) = χC(x)m = [(1− x)(−x) + 1]m = [x2 − x+ 1]m.

Obviously 1 is not a root of this polynomial, so 1 is not an eigenvalue of B. This �nishes

the case n even. If n = 3 + 2m is odd for m ≥ 0, consider the block-diagonal matrix

B =


D

C

C

·
C


for D the 3× 3-matrix

D =

0 1 1

0 0 1

1 0 0


. Observe that this implies for the characteristic polynomial

χB(x) = χD(x)χC(x)m = [−x3 + x+ 1] · [x2 − x+ 1]m.

Obviously 1 is not a root of this polynomial either, so 1 is not an eigenvalue of this B.

This �nishes the case n odd and the proof.

Remark 7.1.4.

1. In the case of Bn or Dn, the linear action used is the one induced by the map

G(Bn, K) = Spin2n+1(K)→ SO2n+1(K) ⊂ GL2n+1(K)

and

G(Dn, K) = Spin2n(K)→ SO2n(K) ⊂ GL2n(K)

respectively and note that the covering map Spini(K) → SOi(K) is always surjec-

tive.

2. This `dimension counting'-strategy is quite well-known and was mentioned to me

by B. Karlhofer in a di�erent context, but it is also alluded to in Lawther's and

Liebecks paper [25, p. 120].
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3. There are a couple of other ways one could show that ‖G(Φ, K)‖E has a lower bound

linear in the rank of Φ. For example, one could also compare the dimension of the

centralizer of E in G(Φ, K) with the dimension of G(Φ, K).

The main theorem in this sections is a generalization of [24, Theorem 6.1] with better

lower bounds:

Theorem 7.1.5. Let R a Dedekind domain with �nite class number and at least k distinct

maximal ideals. Further let Φ be one of the following root systems:

1. An for n ≥ 2,

2. Bn for n ≥ 3,

3. Cn for n ≥ 3,

4. Dn for n ≥ 4,

5. E6, E7, E8 or F4

such that G(Φ, R) is boundedly generated by root elements. Then the following hold

1. ∆k(G(An, R)) ≥ k(n+ 1) for n ≥ 2,

2. ∆k(G(Bn, R)) ≥ k(n+ 1) for n ≥ 3,

3. ∆k(G(Cn, R)) ≥ 2nk for n ≥ 3,

4. ∆k(G(Dn, R)) ≥ kn for n ≥ 4,

5. ∆k(G(Φ, R)) ≥ 2k for Φ = E6, E7, E8, F4.

Proof. Let k distinct maximal ideals P1, . . . ,Pk be given and let c be the class number

of R. All the ideals Pci are principal for i = 1, . . . , k so choose t1, . . . , tk as generators of

Pc1, . . . ,Pck respectively and set

ri :=
∏

1≤j 6=i≤k

tj

for all i = 1, . . . , k. Fix a long root φ ∈ Φ next and consider for i = 1, . . . , k the elements

Ai := εφ(ri) and the set S := {A1, . . . , Ak}. Then Π(Ai) =
⋃
j 6=i {Pj} holds for i = 1, . . . , k

and thus Π(S) = ∅ follows. Hence Corollary 3.2.8 implies that S is a normally generating

set of G(Φ, R). Next, set Ki := R/Pi for i = 1, . . . , k and consider the map

π : G(Φ, R)→
k∏
i=1

G(Φ, Ki), A 7→ (πP1(A), . . . , πPk(A)).

Further observe that rj is an element of Pi for all 1 ≤ i 6= j ≤ k and rj is not an element

of Pj. Thus the only non-trivial component of π(Aj) is the G(Φ, Kj)-component equal to
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εφ(rj +Pj) and G(Φ, Kj) is normally generated by εφ(rj +Pj) according to Lemma 7.1.1.

Also this implies that the only non-trivial component of any conjugate of π(Aj) is the

G(Φ, Kj)-component. Together this implies that π(S) normally generates
∏k

i=1G(Φ, Ki)

and

‖G(Φ, R)‖S ≥ ‖
k∏
i=1

G(Φ, Ki)‖π(S) =
k∑
i=1

‖G(Φ, Ki)‖εφ(ri+Pi).

First, observe that ‖G(Φ, Ki)‖εφ(ri+Pi) ≥ 2 holds according to Lemma 7.1.1 for all Φ

and all i = 1, . . . , k. This implies

‖G(Φ, R)‖S ≥
k∑
i=1

‖G(Φ, Ki)‖εφ(ri+Pi) ≥ 2k.

This �nishes the proof in the cases Φ = E6, E7, E8 and F4.

For the other cases of Φ it su�ces to apply Proposition 7.1.3 to obtain

1. ‖G(An, Ki)‖εφ(ri+Pi) ≥ n+ 1,

2. ‖G(Bn, Ki)‖εφ(ri+Pi) ≥ n+ 1,

3. ‖G(Cn, Ki)‖εφ(ri+Pi) ≥ 2n and

4. ‖G(Dn, Ki)‖εφ(ri+Pi) ≥ n

for all i = 1, . . . , k. Hence we obtain

‖G(Φ, R)‖S ≥
k∑
i=1

‖G(Φ, Ki)‖εφ(ri+Pi) ≥



k(n+ 1), if Φ = An for n ≥ 2

k(n+ 1), if Φ = Bn for n ≥ 3

2nk, if Φ = Cn for n ≥ 2

kn, if Φ = Dn for n ≥ 4

This �nishes the proof.

We want to point out that for T ∈ {A,B,C,D} and n, k ∈ N this theorem provides a

lower bound linear in n and k. Namely, the equation

∆k(G(Tn, R))

kn
> CT

holds for some constant CT > 0. Yet it is not possible to �nd lower bounds of ∆k(G(An, R))

for example with a better asymptotic behaviour in n using arguments as in the proof of

Theorem 7.1.5. This is the case, because the covering numbers of �nite groups of Lie type

are known to be linear in the rank of the corresponding root system, due to Liebeck's and

Lawther's paper [25]. However, Theorem 7.1.5 gives bounds for semi-local rings, which
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are also principal ideal domains that have the `correct' asymptotic in the rank of Φ and

the number of maximal ideals:

Corollary 7.1.6. Let R be a principal ideal domain with precisely q distinct maximal

ideals. Further let n >> 0 be a natural number. Then

1. q(n+ 1) ≤ ∆∞(SLn(R)) ≤ 12(n− 1)q and

2. 2nq ≤ ∆∞(Sp2n(R)) ≤ 768(3n− 2)q

hold.

Proof. The upper bounds are consequences of Corollary 5.2.5 and the lower bounds con-

sequences of Theorem 7.1.5.

For rings of S-algebraic integers the situation is less well understood. There is a

discrepancy between the asymptotic of the upper and lower bounds:

Corollary 7.1.7. Let R be a ring of S-algebraic integers with class number 1 and in�nitely

many units. Further let n be a natural number. Then

1. k(n+ 1) ≤ ∆k(SLn(R)) ≤ (4n+ 1)(4n+ 4)k and

2. 2nk ≤ ∆k(Sp2n(R)) ≤ 192(1 + 5n)(12n+ 12)k

hold for all k ∈ N.

Proof. The lower bounds follow from Theorem 7.1.5 again and the upper bounds are a

consequence of Corollary 6.1.6 and Corollary 6.1.9 respectively.

Remark 7.1.8. There are similar statements for rings of algebraic integers with only �nitely

many units.

7.2 Finite normal generating sets of Sp4 and G2

Next, we are going to describe lower bounds on ∆k(Sp4(R)) and ∆k(G2(R)) in the case of

S-algebraic integers. It turns out that in this case the (existence of) lower bounds depends

on the way 2 splits into primes in the ring R.

Theorem 7.2.1. Let Φ be C2 or G2 and let R be a ring of S-algebraic integers in a

number �eld. Further let

r := r(R) := |{P| P divides 2R, is a prime ideal and R/P = F2}|

Then
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1. the inequalities ∆k(G(C2, R)) ≥ 4k + r(R) and ∆k(G2(R)) ≥ 2k hold for all k ∈ N
with k ≥ r(R) and

2. the equality ∆k(G(Φ, R)) = −∞ holds for k < r(R).

We show both parts of the theorem separately. For the �rst part, the main di�culty,

compared to Theorem 7.1.5 comes, from the more complex conditions a set S has to ful�ll

to be a normal generating set. To address this, we �rst describe the way certain quotients

of rings of S-algebraic integers are generated by their units:

Lemma 7.2.2. Let R be a ring of S-algebraic integers, P1, . . . ,Ps distinct non-zero, prime

ideals in R and l1, . . . , ls natural numbers and set R̄ := R/(P l11 · · · P lss ).

1. If |R/Pi| ≥ 3 holds for all i = 1, . . . , s, then each element in R̄ is the sum of two

units.

2. If at most one of the Pi has the property |R/Pi| = 2, then each element in R̄ is the

sum of at most three units.

Proof. We will show the �rst claim by induction on s. Let s = 1 and x ∈ R be given.

Then assume for all a ∈ R that either a ∈ P1 or x − a ∈ P1 holds. Thus a(x − a) ∈ P1

would hold for all a ∈ R. Thus each element in the integral domain R/P1 is either x+P1

or trivial and hence |R/P1| = 2. This contradiction yields the existence of an a ∈ R with

neither a nor x − a elements of P1. But then both a + P l11 and x − a + P l11 are units in

R/P l11 . This solves the case s = 1.

For the induction step let prime ideals P1, . . . ,Ps+1 be given and assume by induction

that every element y1 ∈ R/(P l11 · · · P lss ) := R1 is the sum of two units u1, u2 ∈ R1. Also

by the beginning of the induction, each element y2 ∈ R/P ls+1

s+1 := R2 is the sum of two

units u3, u4 ∈ R2. This implies that

(y1, y2) = (u1 + u2, u3 + u4) = (u1, u3) + (u2, u4) ∈ R1 ×R2 = R/(P l11 · · · P ls+1
s ) = R̄

is also the sum of two units. This proves the �rst claim of the lemma.

For the second claim of the lemma, assume wlog that |R/P1| = 2 and let y1 ∈ R/P l11 =:

R1, y2 ∈ R/(P l22 · · · P lss ) =: R2 be given. Then by the �rst claim of the lemma, there are

units u1, u2 ∈ R2 with y2 = u1+u2.We distinguish two cases: First, assume y1 is not a unit

in R1. But then both 1+y1 and −1 are units in R1. Hence (y1, y2) = (1+y1, u1)+(−1, u2)

is a sum of two units in R̄. On the other hand, assume y1 is a unit in R1. By the �rst

claim of the lemma, the element u2 ∈ R2 can be written as the sum u3 + u4 for two units

u3, u4 in R2. This implies that

(y1, y2) = (y1, u1) + (0, u2) = (y1, u1) + (1, u3) + (−1, u4)
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is the sum of three units.

This implies the following technical proposition:

Proposition 7.2.3. Let R be a ring of S-algebraic integers such that the ideal 2R factor-

izes in prime ideals as follows

2R =

(
r∏
i=1

P lii

)
·

(
s∏
j=1

Qkjj

)

with [R/Pi : F2] = 1 for 1 ≤ i ≤ r and [R/Qj : F2] > 1 for 1 ≤ j ≤ s. Further, let

r1, . . . , rr ∈ R be given such that for each i = 1, . . . , r the element ri is contained in

each P lkk for k 6= i and maps to a unit in Ri := R/(P lii ·
(∏s

j=1Q
kj
j

)
). Also let α be the

simple, positive, short root in C2 or G2. Then for Φ = C2 or G2, any normal subgroup N

containing

{εφ(2x)|x ∈ R, φ ∈ Φ} ∪ {εα(ri)|i = 1, . . . , r}

agrees with Sp4(R) or G2(R) respectively.

Proof. According to Theorem 6.1.2, the groups Sp4(R) and G2(R) are generated by root

elements. Thus it su�ces to show that N contains all root elements. Hence according to

Lemma 3.4.2(3) and Lemma 3.5.4(2) it su�ces to show that N contains the set {εα(x)|x ∈
R}.

Let R̄ := R/2R and de�ne R̄0 := {a + 2R|∃b ∈ a + 2R : εα(b) ∈ N}. So to prove

the proposition, it su�ces to show that R̄0 = R̄. We prove R̄0 = R̄ in three steps. First,

we show that R̄0 is closed under addition. Second, we show that R̄0 is closed under

multiplication with units of R̄. Then, we deduce that these two steps imply R̄0 = R̄. For

simplicity, we will restrict ourselves to the case of Sp4(R) to show the three steps.

The �rst step is clear, because N is a subgroup of Sp4(R). For the second step, let

εα(b) be an element of N and let u ∈ R be given such that u + 2R is a unit in R̄. Then

we can pick a v ∈ R such that v + 2R is the inverse of u + 2R. Then observe that the

following is an element of the normal subgroup N :

εβ(v)ε−β(−u)wβ(1)−1εα(b)wβ(1)ε−β(u)εβ(−v)

= εβ(v)ε−β(−u)εα+β(±b)ε−β(u)εβ(−v)

= εβ(v)εα+β(±b)εα(±bu)ε2α+β(±b2u)εβ(−v)

= εα+β(±b)εα(±bu)εα+β(±bvu)ε2α+β(±b2u± b2vu2)

= εα(±bu)εα+β(±bvu± b)ε2α+β(±b2u± b2vu2 ± 2b2u).

Hence to �nish the second step it su�ces to show that ±bvu± b and ±b2u± b2vu2± 2b2u
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are elements of 2R. To this end, observe �rst that

[±bvu± b] + 2R = [b · (vu− 1)] + 2R = [b · (1− 1)] + 2R = 0 + 2R

and hence ±bvu± b is an element of 2R. Second, note

[±b2u± b2vu2 ± 2b2u] + 2R = [b2u− b2vu2] + 2R = [b2u · (1− vu)] + 2R

= [b2u · (1− 1)] + 2R = 0 + 2R

and hence ±b2u± b2vu2± 2b2u is an element of 2R as well. This �nishes the second step.

To show R̄0 = R̄ and thus to �nish the proof, observe �rst that by assumption on r1,

r1 + 2R = (0 + P l22 , 0 + P l33 , . . . , 0 + P lrr , r1 + P l11 · Qk1
1 · · · Qkss ) ∈ {0} ×R1

⊂ (R/[P l22 · · · P lrr ])×R1 = R/2R

holds under the Chinese Remainder Theorem. Further r1 maps to a unit r′1 in the ring

R1 by assumption. But by de�nition of N and R̄0, the element r1 + 2R is an element of

R̄0. Next, let u′ be a unit in R1 and choose a u ∈ R such that

u+ 2R = (1 + P l22 , 1 + P l33 , . . . , 1 + P lrr , u′(r′1)−1) ∈ (R/[P l22 · · · P lrr ])×R1 = R/2R.

holds under the Chinese Remainder Theorem. Obviously u+ 2R is a unit in R̄ and hence

according to the second step

r1u+ 2R = (0 + P l22 · · · P lrr , u′(r′1)−1r′1) = (0 + P l22 · · · P lrr , u′) ∈ (R/[P l22 · · · P lrr ])×R1

is an element of R̄0. But as u′ ∈ R1 is an arbitrary unit, this implies according to the �rst

step, that R̄0 contains the subgroup of R1 generated by the units of R1. Yet Lemma 7.2.2

implies that this subgroup is already the entire subgroup R1. So R̄0 contains the entire

subgroup R1 = {0} × R1 of R/2R. Similarly, R̄0 contains all the subgroups R2, . . . , Rr

and hence the entire ring R/2R.

We can show the �rst part of Theorem 7.2.1 now.

Proof. First, assume that 2 is a unit in R. In this case, the necessary condition in Corol-

lary 3.2.8 on a set S to normally generate Sp4(R) or G2(R) reduces to Π(S) = ∅. But this
implies that the lower bounds on ∆k(Sp4(R)) and ∆k(G2(R)) can be shown in the same

manner as in Theorem 7.1.5 in this case. So we may assume that 2 in R is not a unit.

Then let the ideal 2R in R split into distinct prime ideals as follows for r := r(R):

2R =

(
r∏
i=1

P lii

)
·

(
s∏
j=1

Qkjj

)
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with [R/Pi : F2] = 1 for 1 ≤ i ≤ r and [R/Qj : F2] > 1 for 1 ≤ j ≤ s. Next, let c be a

multiple of the class number of R greater than all l1, . . . , lr. Pick elements x1, . . . , xr ∈ R
such that Pci = (xi) for all i. Also choose r+ 1 distinct primes Vr+1, . . . , Vk in R which do

not agree with any of the P1, . . . ,Pr,Q1, . . . ,Qs. Passing to the powers V c
r+1, . . . , V

c
k we

can �nd elements vr+1, . . . , vk ∈ R with V c
r+1 = (vr+1), . . . , V c

k = (vk). Further, de�ne the

following elements for 1 ≤ u ≤ r

ru :=

( ∏
1≤i 6=u≤r

xi

)
· vr+1 · · · vk.

For k ≥ u ≥ r + 1 set

ru := x1 · · ·xr ·

( ∏
r+1≤u6=q≤k

vq

)
.

We consider the set S := {εβ(r1), . . . , εβ(rk)} in Sp4(R) or S := {εα(r1), . . . , εα(rk)}
in G2(K). Both cases are quite similar, so we will only write down the case of Sp4(R).

Claim 7.2.3.1. S is a normal generating set of Sp4(R).

Let N be the normal subgroup generated by S. First, note that

Π(εβ(ru)) =

{P1, . . . , P̂u, . . . ,Pr, Vr+1, . . . , Vk} , if 1 ≤ u ≤ r

{P1, . . . ,Pr, Vr+1, . . . , V̂u, . . . , Vk} , if r + 1 ≤ u ≤ k,

where the hat denotes the omission of the corresponding prime. This implies Π(S) = ∅.
But then Proposition 3.2.6 implies that {εφ(2x)|x ∈ R, φ ∈ C2} is contained in N. Further,
Lemma 3.4.2(2) implies that N also contains the elements εα(r1), . . . , εα(rr). Next, note

that by de�nition of the r1, . . . , rr, each ri is contained in each P ljj for j 6= i and maps to

a unit in Ri := R/(P lii ·
(∏s

j=1Q
kj
j

)
). Thus N and the r1, . . . , rr satisfy the assumptions

of Proposition 7.2.3. Hence Proposition 7.2.3 implies that N = Sp4(R). This proves the

claim.

Claim 7.2.3.2. The diameter of ‖ · ‖S is at least 4k + r(R). As |S| = k this proves the

�rst part of the theorem for Sp4(R).

This follows as in the proof of Theorem 7.1.5. Namely, one obtains again that for

π : Sp4(R)→

(
r∏
i=1

Sp4(R/Pi)

)
×

(
k∏

j=r+1

Sp4(R/Vj)

)

the image π(S) is a normal generating set such that the only non-trivial component of

π(εβ(ru)) is the Sp4(R/Pu)-component if u ≤ r and the Sp4(R/Vu)-component if u ≥ r+1.
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As in the proof of Theorem 7.1.5 this implies

‖Sp4(R)‖S ≥ ‖

(
r∏
i=1

Sp4(R/Pi)

)
×

(
k∏

j=r+1

Sp4(R/Vj)

)
‖π(S)

=

(
r∑
i=1

‖Sp4(R/Pi)‖εβ(ri+Pi)

)
+

(
k∑

j=r+1

‖Sp4(R/Vj)‖εβ(rj+Vj)

)
.

But Proposition 7.1.3(3) implies for j = r+ 1, . . . , k that ‖Sp4(R/Vj)‖εβ(rj+Vj) ≥ 4 holds.

Further R/Pi is isomorphic to F2 for all i = 1, . . . , r and so Proposition B.0.3 implies

‖Sp4(R/Pi)‖εβ(ri+Pi) = ‖Sp4(F2)‖εβ(1) = 5 for all i = 1, . . . , r. Hence we obtain

‖Sp4(R)‖S ≥

(
r∑
i=1

‖Sp4(R/Pi)‖εβ(ri+Pi)

)
+

(
k∑

j=r+1

‖Sp4(R/Vj)‖εβ(rj+Vj)

)
≥ 5r + 4(k − r) = 4k + r

and so the the �rst part of Theorem 7.2.1 follows.

For the second part of Theorem 7.2.1, note the following:

Lemma 7.2.4. There is an epimorphism Sp4(F2) → F2 with εφ(a) 7→ a for all a ∈ F2

and φ ∈ C2. Similarly there is an epimorphism G2(F2)→ F2 with

εφ(a) 7→

a, if φ ∈ G2 short

0, if φ ∈ G2 long

Proof. The epimorphism G2(F2) → F2 with the required properties is constructed in

the proof of Lemma 6.3.1. An epimorphism Sp4(F2) → F2 as required is obtained from

Proposition B.0.1: The isomorphism θ : Sp4(F2)→ S6 maps all root elements in Sp4(F2)

to an odd number of transpositions in S6. Hence composing with the sign homomorphism

S6 → F2, we �nd an epimorphism Sp4(F2)→ F2 with the required properties.

Remark 7.2.5. The group G2(F2) has a simple subgroup U with [G2(F2) : U ] = 2. The

subgroup U is isomorphic to the twisted �nite group of Lie type 2A2(F9).

Using this lemma, the second part of Theorem 7.2.1 follows:

Proof. We restrict ourselves to the case Sp4(R) again. Let 2R = (
∏r

i=1P
li
i )(
∏s

j=1Q
kj
j )

be given as in the proof of the �rst part of Theorem 7.2.1. Using the Chinese Remainder

Theorem, we know that the map

Sp4(R)� Sp4(R/2R) =
r∏
i=1

Sp4(R/(P lii ))×
r∏
i=1

Sp4(R/(Qkjj ))�
r∏
i=1

Sp4(R/Pi) = Sp4(F2)r
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is an epimorphism. So composing with the epimorphism Sp4(F2) → F2, we obtain an

epimorphism g : Sp4(R) → Fr2. This su�ces to prove the second part of the theorem,

because a given normal generating set S of Sp4(R) with |S| ≤ r − 1 would map to a

generating set of the abelian group Fr2 with less than r elements. The group Fr2 cannot be
generated by less than r elements however.

Remark 7.2.6. If R is a ring of S-algebraic integers with r(R) = 0, then the boundedness

properties of Sp4(R) and G2(R) are the same as for other G(Φ, R). For example, Theo-

rem 3.3.1 is in fact also valid for Φ = C2 and G2, if the ring R in question does not admit

F2 as a quotient ring, which for rings of S-algebraic integers R can be easily seen to be

equivalent to r(R) = 0. Consequently, it might seem possible to apply Theorem 3.3.1

instead of Theorem 3.4.1 directly in the proof of Theorem 3.2.1 for such rings R.

However, the condition on a ring R to not admit an ideal of index 2 is hard to formulate

in �rst-order terms and we believe it is not a �rst-order property at all. However, for each

ring R with an ideal I with (R : I) = 2, the ideal 2R must be contained in I. Hence, one

could instead add additional properties that make it impossible for R/2R to have the �eld

F2 = R/I as a quotient. For example, if R/2R is �nite, then one can describe the ring

structure of R/2R explicitly as a given direct product of �nite, local non-reduced rings

with residue �elds bigger than F2. This is a �rst-order property.

This �nishes the proof of Theorem 7.2.1. We note the following corollary:

Corollary 7.2.7. Let R be a ring of S-algebraic integers and r = r(R) de�ned as in

Theorem 7.2.1. Then both Sp4(R) and G2(R) have abelianization Fr2.

Proof. We only do the case Sp4(R).Note that 〈〈εφ(2x)|x ∈ R, φ ∈ C2〉〉 ⊂ (Sp4(R), Sp4(R))

by Lemma 3.4.2(4) and (2) and further that Sp4(R) is boundedly generated by root ele-

ments by Theorem 6.1.2. Thus the abelianization A(R) of Sp4(R) is a �nitely generated,

2-torsion group. Let r′ := dimF2(A(R)). The proof of Theorem 7.2.1 implies that A(R)

has the quotient Fr2 and hence r′ ≥ r. Now on the other hand r′ > r is impossible, because

it would imply as in the proof of the second part of Theorem 7.2.1 that there are no

normal generating sets of Sp4(R) with precisely r elements, which we have seen to not be

the case when proving the �rst part of Theorem 7.2.1.

We call the minimal number of conjugacy classes of a group G, that can generate said

group its weight w(G). Then obviously w(G/[G,G]) ≤ w(G) holds for all groups G that

can be generated by �nitely many conjugacy classes.

One notes that for r(R) ≥ 1, according to Corollary 7.2.7 the minimal number of

group elements needed to generate the abelianization of Sp4(R) or G2(R) is r(R) and

according to Theorem 7.2.1 the minimal number of conjugacy classes that can generate

Sp4(R) or G2(R) is r(R) as well. We note the following problem:
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Conjecture 7.2.8. Let G be a non-perfect group such that it can be generated by a �nite

set of conjugacy classes. Then w(G) = w(G/[G,G]) holds.

This conjecture is related to an old problem posed by Wiegold, we were told about by

Alexander Lubotzky, asking whether there are perfect groups which cannot be generated

by a single conjugacy class. Relatively little seems to be known about this problem and

Conjecture 7.2.8 in general. Chiodo [12] gives a rather complete account of the groups G

for which Conjecture 7.2.8 is known to hold, most prominently solvable and �nite groups.

In light of Corollary 7.2.7 and Theorem 7.2.1, we propose the more specialized conjecture

that Conjecture 7.2.8 also holds for general non-perfect arithmetic lattices.

For rings of quadratic integers it is known how 2 splits into primes and hence we can

give the following complete description of r(R):

Corollary 7.2.9. Let D be a square-free integer and R the ring of algebraic integers in

Q[
√
D]. Then

1. r(R) = 1 holds precisely if D ≡ 2, 3, 5, 6, 7 mod 8, so ∆1(Sp4(R)),∆1(G2(R)) 6=
−∞.

2. r(R) = 2 holds precisely if D ≡ 1 mod 8, so ∆1(Sp4(R)) = ∆1(G2(R)) = −∞ and

∆2(Sp4(R)) = ∆2(G2(R)) > −∞.

Proof. We obtain from [28, Theorem 25] that the ideal 2R splits and rami�es in R as

follows:

1. 2R is inert precisely if D ≡ 5 mod 8.

2. 2R rami�es precisely if D ≡ 2, 3, 6, 7 mod 8.

3. 2R splits precisely if D ≡ 1 mod 8.

In the �rst two cases, this implies r(R) = 1 and in the third case r(R) = 2.
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Chapter 8

Straightforward generalizations, open

questions and closing remarks

In this chapter, we talk about possible generalizations of our results in the �rst section

and talk a little more about improving and generalizing our results in the second section.

8.1 A straightforward generalization of Theorem 3.1.2

In this section, we show the following:

Theorem 8.1.1. Let R be a ring of S-algebraic integers and let H be a subgroup of �nite

index in SLn(R) for n ≥ 3. Then there is a constant C(H) ∈ N such that ∆k(H) ≤ C(H)k

holds for all k ∈ N.

The strategy is quite similar to the strategy to prove strong boundedness for Sp4(R).

First, one shows that a certain �xed subgroup of �nite index in H is bounded and then

one shows how to get from this group to the entire group H. First, we need the following

de�nition:

De�nition 8.1.2. Let R be a commutative ring with 1, I an ideal in R, n ≥ 2. Then

de�ne the following subgroups of GLn(R) :

1. E(n,R, I) := 〈A(In + tei,j)A
−1| 1 ≤ i 6= j ≤ n,A ∈ GLn(R), t ∈ I〉 and

2. C(n,R, I) := 〈A ∈ GLn(R)| πI(A) = In〉.

Further for A ∈ SLn(R) de�ne the word norm ‖ · ‖A,I : SLn(R) → N0 ∪ {+∞} by

‖In‖A,I := 0 and

‖X‖A,I := min{m ∈ N0 ∪ {+∞}| ∃Y1, . . . , Ym ∈ E(n,R, I), e1, . . . , em ∈ {1,−1} :

X =
m∏
i=1

YiA
eiY −1

i }.
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for X ∈ SLn(R)− {In}.

Then the following holds:

Theorem 8.1.3. [44, Theorem 2] Let R be a commutative ring with 1, I an ideal in R,

n ≥ 3 and H a subgroup of GLn(R) normalized by the subgroup E(n,R, I). Then there is

an ideal J in R such that

E(n,R, I5J) ⊂ H ⊂ C(n,R, J).

Using this, one can prove the following preliminary proposition:

Proposition 8.1.4. Let R be a commutative ring with 1, I a �nitely generated ideal in

R and n ≥ 3. Then there is a constant C such that for all A ∈ SLn(R), one has

‖I2n + xe1n‖A,I ≤ Cn(I)

for all x ∈ I5l(A) with Cn(I) depending on the number of generators of I and n.

Proof. This will be proven by a compactness argument similar to the ones in Chapter 3

but employing Theorem 8.1.3. First, let 1 ≤ u 6= v ≤ n be given and let a language L
with the relation symbols, constants and function symbols

(R, 0, 1,+,×, (ai,j)1≤i,j≤n, c, s1, . . . , sk, (tM){M⊂{1,...,k} and |M |=5},
−1 )

be given, where A := (ai,j)1≤i,j≤n is an n×n-matrix of constant symbols, s1, . . . , sk, c and

(tM){M⊂{1,...,k} and |M |=5} are constant symbols, +,× : R×R → R are function symbols.

Further ·−1 : Rn×n → Rn×n is another function symbol and we will often write X−1 for
−1(X). Next, we describe a �rst-order theory Tuv, which contains the following sentences:

1. Sentences forcing the universeR := RM of each modelM of Tuv to be a commutative

ring with respect to the functions +M,×M and with 0M, 1M being 0 and 1.

2. The sentence ∀X ∈ Rn×n : (det(X) = 1) → (XX−1 = In), where In denotes the

unit matrix in Rn×n with entries the constant symbols 0, 1 as appropriate.

3. det(A) = 1.

4. c = au,v
∑

M⊂{1,...,k} and |M |=5 tM(
∏

p∈M sp)

5. A family of sentences (θr)r∈N as follows:

θr :∀X1, . . . , Xr,∀b(1)
1 , . . . , b

(1)
k , b

(2)
1 , . . . , b

(2)
k , . . . , b

(r)
1 , . . . , b

(r)
k ,∀e1, . . . , er ∈ {0, 1,−1} :

(det(X1) = · · · = det(Xr) = 1)→[
(In + ce1n) 6= (Ae1)

X1

(
In+e1,n

∑k
p=1 b

(1)
p sp

)
X−1

1 · · · (Aer)Xr
(
In+e1,n

∑k
p=1 b

(r)
p sp

)
X−1
r

]
175



Here A1 := A,A−1 := A−1 and A0 := In.

Next, let us show that the theory Tuv is inconsistent. IfM were a model of Tuv and
R := (R)M would be its universe, than R is a commutative ring with 1 according to the

sentences in (1) and (aMij ) is an element of SLn(R) according to the sentence in (2). We

will abuse notation and denote (aMij ) = AM by A.

Next, setting I as the ideal in R generated by the elements sM1 , . . . , sMk , we know

according to Theorem 8.1.3, that for the subgroup H generated by the set

{XAX−1| X ∈ E(n,R, I)},

there is an ideal J such that

E(n,R, I5J) ⊂ H ⊂ C(n,R, J).

However A is an element of H and thus J must contain l(A) and hence E(n,R, I5l(A)) ⊂
H holds. But cM is an element of I5l(A) according to (4). This implies that In + cMe1n

is an element of H. But this in turn implies that there must be elements X1, . . . , Xr′ ∈
E(n,R, I) and e1, . . . , er′ ∈ {1,−1} such that

In + cMe1n = (Ae1)X1 · · · (Aer′ )Xr′ .

But for i = 1, . . . , r′ each Xi can be written as a product of mi factors of the form

Z(In + ye1n)Z−1 for y ∈ I and Z ∈ SLn(R) by de�nition of E(n,R, I) for some mi. Hence

for r := m1 + · · ·+mr′ , we obtain a contradiction to θr in (5). Thus Tuv is inconsistent.
Gödel's Compactness Theorem [37, Theorem 3.2] implies then, that a certain �nite

subset T 0
uv ⊂ Tuv is already inconsistent. Hence there is only a �nite collection of the θr

contained in T 0
uv. So let Luv ∈ N be the largest r ∈ N with θr ∈ T 0

uv. For all r ∈ N, we
have {(1)− (4), θr+1} ` θr. Hence the subset T 1

uv ⊂ Tuv that contains all sentences in (1)

through (4) and the single sentence θLuv , must be inconsistent as well.

Next, let R be a commutative ring with 1, I an ideal in R generated by the elements

s1, . . . , sk ∈ R,A = (aij) ∈ SLn(R) and c an element of the ideal (auv)I
5. This gives us

a modelM of (1) through (4) and hence as T 1
uv is inconsistent, this model must violate

the sentence θLuv(Φ). But this implies the existence of elements X1, . . . , XLuv ∈ SLn(R) as

well as the existence of y1, . . . , yLuv ∈ I such that

In + ce1n = (Ae1)X1(In+y1e1n)X−1
1 · · · (AeLuv )XLuv (In+yLuv e1n)X−1

Luv .

Hence

‖In + ce1n‖A,I ≤ Luv
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holds for all c ∈ (auv)I
5. Varying u and v as appropriate one obtains for a su�ciently

large Cn(I) ∈ N that

‖In + ce1n‖A,I ≤ Cn(I)

holds for all c ∈ l(A)I5.

From this, one can prove Theorem 8.1.1:

Proof. Let S = {A1, . . . , Ak} be a normal generating set of H.

Observe that as H has �nite index in SLn(R), there is a normal subgroup N of SLn(R)

with �nite index in SLn(R) contained in H. But if N has �nite index in SLn(R), then the

subgroup

I1 := {x ∈ R|In + xe1n ∈ N}

of R must have �nite index in R. Furthermore, I1 is an ideal in R as seen for example

from the proof of Lemma 3.3.3. Hence E(R, n, I1) is a subgroup of N and H. But then

Proposition 8.1.4 implies that the following inequality

‖In + xe1n‖Ai,I1 ≤ Cn(I1)

holds for all x ∈ l(Ai)I5
1 and for i = 1, . . . , k, because I1 is �nitely generated as an ideal,

as R is noetherian. But this inequality implies that

‖In + xe1n‖S ≤ Cn(I1)k

holds for all x ∈ (l(A1) + · · ·+ l(Ak))I
5
1 .

However, observe that I1 must be contained in l(A1) + · · · + l(Ak) := J, because

clearly πJ(A) scalar must hold for each A ∈ H. Thus the ideal I6
1 is contained in the ideal

(l(A1) + · · ·+ l(Ak))I
5
1 . Hence

‖In + xe1n‖S ≤ Cn(I1)k

holds for all x ∈ I6
1 =: I2. Next, de�ne the subgroup H̃ of H generated by

Q := {A(In + xe1n)A−1| A ∈ H, x ∈ I2}.

Obviously, Q induces a conjugation generated word norm ‖ · ‖Q on H̃. Next, observe that

as H contains the subgroup E(n,R, I1), one obtains from Theorem 8.1.3 that there is an

ideal I3 in R such that

E(n,R, I5
2I3) ⊂ H̃ ⊂ C(n,R, I3).

But I3 cannot be trivial, because H̃ contains non-central elements. Hence H̃ contains

the �nite index subgroup E(n,R, I5
2I3) of SLn(R) and hence H̃ itself has �nite index in
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SLn(R). But this implies according to a Theorem by myself, K¦dra and Gal [19, Theorem],

that H̃ is bounded and hence there is a natural number M(R, I2) such that

‖H̃‖Q ≤M(R, I2).

But each element X in Q satis�es ‖X‖S ≤ Cn(I1)k and hence

‖H̃‖S ≤M(R, I2)Cn(I1)k (8.1)

holds.

Further, observe that H̃ is a normal subgroup of �nite index of H. Thus the group

G := H/H̃ is �nite. Let π : H → G be the corresponding quotient map and set

Σ(G) := {T ⊂ G| T normally generates G}.

Then Σ(G) is �nite as G is �nite and hence there is a L(G) ∈ N such that for each

T ∈ Σ(G), one has for the corresponding conjugation generated word norm ‖ · ‖T on G

induced by T that

‖G‖T ≤ L(G).

But S normally generates H and hence π(S) is an element of Σ(G). Thus ‖G‖π(S) ≤ L(G)

holds. Hence for A ∈ H there are X1, . . . , XL(G) ∈ H and B1, . . . , BL(G) ∈ S ∪ S−1 ∪ {In}

with π(
∏L(G)

i=1 BXi
i ) = π(A). Hence A

(∏L(G)
i=1 BXi

i

)−1

∈ H̃ holds and thus (8.1) implies

‖A‖S ≤ ‖
L(G)∏
i=1

BXi
i ‖S + ‖H̃‖S ≤

L(G)∑
i=1

‖Bi‖S +M(R, I2)Cn(I1)k.

However as each Bi is an element of S ∪ S−1 ∪ {In}, one obtains

‖A‖S ≤ L(G) +M(R, I2)Cn(I1)k

for all A ∈ H and thus the theorem is proven, because the constants L(G),M(R, I2) and

Cn(I1) depend on the ideals I1 and I2 = I6
1 in R and the ideal I1 does not depend on the

set S but only on the subgroup H.

Remark 8.1.5. The main problem in proving strong boundedness for a �nite index sub-

group H of arithmetic Chevalley groups is that even if the group H is normal, one cannot

just study the normal subgroup generated by conjugacy classes with respect to SLn(R)

as we did in Chapter 3, because two elements of H might be conjugate with respect to

SLn(R) without being conjugate in H itself. This makes it necessary to study normal

subgroups of H instead or in other words, subnormal subgroups of SLn(R).
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8.2 Possible generalizations and potential future research

Generalizing strong boundedness to other groups

There are four clear avenues to generalize the statements about strong boundedness of

this thesis to other groups:

The �rst and most obvious one is to �nd other rings R that also satisfy the bounded

generation assumption by root elements property for G(Φ, R) with Φ an irreducible root

system of rank at least 2. A clear candidate for such rings are rings of S-algebraic integers

in global �elds of positive characteristic. As mentioned before, Nica has shown in [34]

that SLn(F[T ]) is boundedly generated for F a �nite �eld and it seems quite likely to me

that this holds for all rings of S-algebraic integers in global �elds of positive characteristic.

Luckily enough, there has been quite a lot of research in the characteristic 0-case already

and it should be possible to �nd such generalizations with similar arguments.

The second possible avenue is to consider the last remaining root system Φ = A1 and

SL2(R) for suitable rings R. For example, one could attempt to prove Conjecture 6.5.1.

The structure of normal subgroups of SL2(R) is more complicated than the one of the

higher rank Chevally groups. Yet normal subgroups of SL2(R) for R a Dedekind domains

with in�nitely many units have been described completely by Costa and Keller [13] in

terms of so-called radices. It seems likely to me that the validity of the classi�cation results

in [13] can be shown under certain �rst order conditions as well and not only under the

assumption that R is a Dedekind domain with in�nitely many units. This would enable

one to apply a compactness argument in a similar manner as done in Chapter 3 to obtain

certain root elements. Then one could probably �nish the proof in a similar manner as

done in the case of Sp4(R) and G2(R) using bounded generation results for SL2(R) like

Theorem 6.1.5. Obviously, this second avenue, if successful could likely also work for R a

ring of S-algebraic integers in a global �eld of positive characteristic with in�nitely many

units. This however would require to show a version of Theorem 6.1.5 in this case.

The third avenue for generalizations is to consider other arithmetic groups entirely. I

have shown such a result in Theorem 8.1.1, but the proof of Theorem 8.1.1 also highlights

the problem with the proof strategy as I presented it: My strategy requires to understand

the normal subgroup structure of the arithmetic group in question and I am not aware

of general results of this form. Furthermore, the corresponding result about normal sub-

groups would have to be rephrased in �rst-order terms as to enable the application of a

compactness argument and I am doubtful that this is always possible. But using Bak's

concept of form ideals and form rings, one can describe the subnormal structure of cer-

tain other matrix groups, mostly higher rank symplectic and even orthogonal groups [47]

and so one can show some further generalizations of my results for these certain special

cases. Ultimately though, the strategy of understanding the normal subgroup structure

does not seem the most promising to me and I would like to prove strong boundedness
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results from results about arithmetic lattices directly. I should also mention, that lattices

can in general not be uniformly bounded as observed by Kedra, Libman and Martin [24,

Theorem 5.5]

Fourth, twisted arithmetic Chevalley groups, which according to [42] are also bound-

edly generated by root elements, might admit strong boundedness statements as well, but

I am not aware of a description of normal subgroups of these groups.

Last, there is the problem of the existence of normal subgroups. As mentioned before,

Theorem 7.2.1 and Corollary 7.2.7 imply together that for R a ring of S-algebraic integers

in a number �eld, the minimal number w(Sp4(R)) of conjugacy classes needed to generate

Sp4(R) agrees with b1(Sp4(R)), if b1(Sp4(R)) is at least 1. I suspect that the same holds

for more general arithmetic lattices. For example, I think that for R a ring of S-algebraic

integers with in�nitely many units, one still has w(SL2(R)) = max{1, r(R)}. Note in this

context that using Margulis Superrigidity [31, Theorem 16.1.11], one can show that the

abelianization of many arithmetic lattices is always �nite though.

Asymptotics of strong boundedness

Roughly, speaking my strategy to prove strong boundedness for arithmetic Chevalley

groups consisted of �rst deconstructing a given �nite set of conjugacy classes to obtain a

su�ciently `large' subgroup of root elements in a ball of �nite diameter with respect to the

corresponding conjugation generated norm and then reconstructing arbitrary elements of

the group using bounded generation results. However, both of these steps seem to require

linear in the rank of the root systems many factors. Together, this results in upper bounds

on ∆k(G(Φ, R))/k quadratic in the rank of Φ as seen in Corollary 7.1.7. However, results

for covering numbers [25, Theorem 1] as well as Corollary 7.1.6 and Theorem 5.2.7 for

the semi-local case indicate an asymptotic linear in the rank of Φ and I believe that the

true asymptotic of ∆k(G(Φ, R))/k should be linear in the rank of Φ even in the case of

R a ring of S-algebraic integers.

To show this however, one would have to explain how to write arbitrary elements of

G(Φ, R) as products of the initial normal generating set S from the start without the

detour of root elements or explain how one can for A ∈ G(Φ, R) write root elements

with arguments in l(A) as products of conjugates of A with a number of factors that

does not depend on the rank of Φ. Both of these things are reasonably easy to do if R

is a �eld, however for R a ring of S-algebraic integers one arrives at a bit of an impasse,

because of the absence of a neat decomposition like the Bruhat decomposition for �elds.

Furthermore, excluding the case G2(F2), for a �eld it is enough to �nd a single none-trivial

root element to get all the other ones.

If R is at least a principal ideal domain, one can actually use the Bruhat decomposition

[41, Chapter 8, p. 68, Corollary 1] that I use in Chapter 4 to cut down on the number of
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root elements needed to write a group element in a similar manner as in the �eld case and

I will do so in a future paper. However, in contrast to the �eld or the semi-local case this

is not enough, because one must also accumulate enough root elements such that their

respective arguments are coprime.

Ultimately, the asymptotics for ∆k provided in this thesis are di�cult to improve out-

right for Chevalley groups and presumably other lattices, not only because the underlying

ring might fail to be a principal ideal domain, which is a minor issue, but also because

one needs to potentially involve all entries of a given element of a normal generating set

and cannot focus on a number of entries independent of the rank of Φ as was done in the

proof of Theorem 5.2.7 and more research is needed to resolve these questions.
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Appendix A

Root systems and Weyl groups

This section is lifted almost verbatim from the appendices of Humphreys book [21] and

Steinbergs book [41]. First, root systems are de�ned as follows:

De�nition A.0.1. Let (V, (·, ·)) be a �nite-dimensional, euclidean vector space. Then a

subset Φ ⊂ V − {0} is called a root system, if Φ satis�es the following assumptions:

1. The set Φ spans V as a R-vector space.

2. If α ∈ Φ, then Rα ∩ Φ = {α,−α}.

3. For any α, β ∈ Φ, the element wα(β) := β − 2 (α,β)
(α,α)

α is also an element of Φ.

4. For any α, β ∈ Φ, the number 〈β, α〉 := 2 (α,β)
(α,α)

is an integer.

The elements of Φ are called roots and the dimension of V the rank of the root system.

Let Φ be a root system of rank n. A Z-linear independent subset Π = {α1, . . . , αn} of
Φ with the property

Φ =

(
Φ ∩

n⊕
i=1

N0αi

)
∪

(
Φ ∩

n⊕
i=1

(−N0)αi

)

is called a system of (positive) simple roots. Fixing a system of simple roots Π in a root

system Φ, the elements in (Φ ∩
⊕n

i=1 N0αi) are called the positive roots of Φ, the set

usually denoted by Φ+, and the elements of (Φ ∩
⊕n

i=1(−N0)αi) are called the negative

roots of Φ, the set usually denoted by Φ−. Furthermore, if φ ∈ Φ is equal to
∑n

i=1 kiαi,

then wt(φ) := |
∑n

i=1 ki| is called the weight of the root φ.

Further, for Φ a root system and α ∈ Φ, the maps wα : V → V, v 7→ v − 2 (α,v)
(α,α)

α are

isometries of (V, (·, ·)). The subgroup W (Φ) of Isom(V, (·, ·)) is the group generated by

elements of the form {wα|α ∈ Φ}. The Weyl group W (Φ) acts on the root system Φ. It

is clear that for Π a system of simple roots and w ∈ W (Φ), the set w(Π) is also a system

of simple roots.
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Proposition A.0.2. Let Φ be a root system of rank n.

1. Systems of simple roots in Φ exist and the Weyl group W (Φ) acts simply, transitively

on {Π|Π a system of simple roots in Φ}.

2. For Π = {α1, . . . , αn} a system of simple roots, set for 1 ≤ i 6= j ≤ n

mij :=



2, if ^(αi, αj) = π/2

3, if ^(αi, αj) = 2π/3

4, if ^(αi, αj) = 3π/4

6, if ^(αi, αj) = 5π/6

and mi,i = 1. Then W (Φ) is generated by {wα1 , . . . , wαn} and

W (Φ) ∼= 〈wα1 , . . . , wαn |∀1 ≤ i ≤ j ≤ n : (wαiwαj)
mij = 1〉

Remark A.0.3. For Π = {α1, . . . , αn} a system of simple roots in Φ the re�ections

wα1 , . . . , wαn are called fundamental re�ections in W (Φ).

There is an obvious concept of isomorphism of root systems and direct sums of root

systems. A root system is called irreducible if it is not isomorphic to the direct sum of two

non-trivial root systems. A common tool to describe root systems are Dynkin diagrams:

De�nition A.0.4. Let Φ be a root system and Π a system of simple roots of Φ. Then

the Dynkin diagram D(Φ) of (Φ,Π) is the directed multigraph de�ned as follows:

1. The vertices of D(Φ) are the elements of Π.

2. For α, β ∈ Π with α 6= β the edge {α, β} is contained in D(Φ), if 〈α, β〉 6= 0 and the

multiplicity of the edge is |〈α, β〉 · 〈β, α〉|.

3. All edges are undirected except the ones connecting simple roots of unequal length.

They are directed to start in longer roots and are marked by arrows.

All systems of simple roots of Φ di�er by an element W (Φ) according to Proposi-

tion A.0.2 and hence the isomorphism type of the multigraph D(Φ) does not depend on

the particular system of simple roots Π used to de�ne it. Hence we will usually omit

specifying the system of simple roots.

For a semi-simple, complex Lie group G there is an action of its Lie algebra g on itself

denoted by ad : g → End(g). For a maximal abelian subalgebra h of g, the elements

of h map to diagonalizable elements of End(g) under ad and as h is abelian they are

simultaneously diagonalizable. Phrased di�erently, g decomposes as the direct sum of
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simultaneous eigenspaces

gα := {X ∈ g|∀H ∈ h : ad(H)(X) = α(H)X}

for certain linear maps α : h→ C. Set

Φ := {α : h→ C|gα 6= {0} and α 6= 0}

and let V be the subspace of Hom(h,C) generated by Φ as an R-vector space. Further,

one de�nes the Killing-form B : g× g→ C for X, Y ∈ g as follows:

B(X, Y ) := trgC(ad(X)ad(Y )).

The bilinear form B de�nes a non-degenerate, symmetric bilinear form on h. Thus for

each α ∈ Φ there is a unique H ′α ∈ h such that B(H,H ′α) = α(H) holds for all H ∈ h.

Then one can de�ne a scalar product on V by setting

(α, β) := B(H ′α, H
′
β)

for α, β ∈ Φ. This yields Φ as a root system in (V, (·, ·)) and if G is simple, then Φ is

irreducible.

Proposition A.0.5. An irreducible root system Φ is determined up to isomorphism by its

Dynkin diagram D(Φ). Further, the Dynkin diagram D(Φ) of any irreducible root systems

Φ is one of the following:

· · ·An :

· · ·Bn :

· · ·Cn :

· · ·Dn :
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E6 :

E7 :

E8 :

F4 :

G2 :

Further each of those diagrams is realized as the Dynkin diagram of the root system Φ

of a simple, complex Lie-group.

Remark A.0.6. The root systems An, Bn, Cn and Dn are commonly referred to as classical

root systems, because they arise as root systems of familiar complex matrix groups. On

the other hand, the root systems E6, E7, E8, F4 and G2 are commonly referred to as

exceptional root systems.

Proposition A.0.7. Let Φ be a root system, Π a system of simple roots and α ∈ Φ. Then

there is a β ∈ Π and a w ∈ W (Φ) with w(α) = β.

Proposition A.0.8. Let Φ be an irreducible root system, α ∈ Φ be given and let β ∈ Π

have the same length as α. Then there is a w ∈ W (Φ) with w(α) = β. Phrased di�erently,

the equivalence relation on Φ induced by the action of W (Φ) has one equivalence class for

each root length present in Φ.

Proof. According to Proposition A.0.7, there is an element w ∈ W (Φ) with w(α) ∈ Π.

Thus we may assume that α is also an element of Π. According to Proposition A.0.5,

for two elements of Π of the same length, there is a path in D(Φ) only passing through

elements of Π of the same length. Phrased di�erently, we may assume that Φ = An for

n ≥ 2. So by induction on n, it su�ces to consider the case Φ = A2 and that the positive

roots in Φ = A2 are α, β and α + β. The claim now follows as

wαwβ(α) = wα(α + β) = β

holds.
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Appendix B

The permutation group S6 and Sp4(F2)

In this Appendix, we collect some statements about Sp4(F2) that are used in Chapter 6

and Chapter 7. First, we note the following fact:

Proposition B.0.1. There is a unique isomorphism θ : Sp4(F2)→ S6 with

θ(εα(1)) = (1, 2)(3, 4)(5, 6), θ(ε−α(1)) = (1, 3)(2, 5)(4, 6)

θ(εβ(1)) = (4, 6), θ(ε−β) = (5, 6).

Proof. We de�ne θ(εφ(1)) as follows:

θ(εα(1)) = (1, 2)(3, 4)(5, 6), θ(ε−α(1)) = (1, 3)(2, 5)(4, 6)

θ(εβ(1)) = (4, 6), θ(ε−β(1)) = (5, 6)

θ(εα+β(1)) = (1, 2)(3, 5)(4, 6), θ(ε−α−β(1)) = (1, 3)(2, 4)(5, 6)

θ(ε2α+β(1)) = (1, 2), θ(ε−2α−β(1)) = (1, 3)

Using [41, Chapter 6, p. 43, Theorem 8] and the fact that all permutations described

above have order 2, we obtain that θ extends to a homomorphism θ : Sp4(F2)→ S6 if the

following conditions are satis�ed for all φ, ψ ∈ C2 :

(θ(εφ(1)), θ(εψ(1))) = 1, if {φ+ ψ} = (Z>0φ⊕ Z>0ψ) ∩ C2

(θ(εφ(1)), θ(εψ(1))) = 1, if φ+ ψ /∈ C2 and φ+ ψ 6= 0

(θ(εφ(1)), θ(εψ(1))) = θ(εφ+ψ(1))θ(ετ (1)), if φ+ ψ ∈ C2 and τ = φ+ 2ψ or 2φ+ ψ ∈ C2.

But note that θ(ε−φ(1)) = [(2, 3)(5, 4)]θ(εφ(1))[(2, 3)(5, 4)]−1 holds for all φ ∈ C2. Thus to

see that θ extends to a homomorphism it su�ces to show the conditions in the case that

φ is positive.

Next, we go through the various possibilities for φ and ψ. First assume φ = α. For
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the �rst case take ψ = β. But indeed

(θ(εα(1)), θ(εβ(1))) = [(1, 2)(3, 4)(5, 6)] · (4, 6) · [(1, 2)(3, 4)(5, 6)]−1 · (4, 6) = (3, 5)(4, 6)

= (1, 2)(3, 5)(4, 6) · (1, 2) = θ(εα+β(1))θ(ε2α+β(1))

holds. Further, for ψ = α + β

(θ(εα(1)), θ(εα+β(1))) = [(1, 2)(3, 4)(5, 6)] · (1, 2)(3, 5)(4, 6) · [(1, 2)(3, 4)(5, 6)]−1

· (1, 2)(3, 5)(4, 6) = (2, 1)(4, 6)(3, 5) · (1, 2)(3, 5)(4, 6) = 1

holds and for ψ = 2α + β one obtains

(θ(εα(1)), θ(ε2α+β(1))) = [(1, 2)(3, 4)(5, 6)] · (1, 2) · [(1, 2)(3, 4)(5, 6)]−1 · (1, 2) = 1.

For the case ψ = −β, we obtain

(θ(εα(1)), θ(ε−β(1))) = [(1, 2)(3, 4)(5, 6)] · (5, 6) · [(1, 2)(3, 4)(5, 6)]−1 · (5, 6) = 1

and for the case ψ = −α− β, we obtain

(θ(εα(1)), θ(ε−α−β(1))) = [(1, 2)(3, 4)(5, 6)] · (1, 3)(2, 4)(5, 6) · [(1, 2)(3, 4)(5, 6)]−1

· (1, 3)(2, 4)(5, 6) = (2, 4)(1, 3)(6, 5) · (1, 3)(2, 4)(5, 6) = 1.

Lastly, we obtain for the case ψ = −2α− β that

(θ(εα(1)), θ(ε−2α−β(1))) = [(1, 2)(3, 4)(5, 6)] · (1, 3) · [(1, 2)(3, 4)(5, 6)]−1 · (1, 3)

= (2, 4)(1, 3) = (1, 3)(2, 4)(5, 6) · (5, 6) = θ(ε−α−β(1))θ(ε−β(1)).

This �nishes the case φ = α. Further note that all of the previous commutators have order

at most two and hence the previous calculations also settle the cases

(φ, ψ) ∈ {(β, α), (α + β, α), (2α + β, α)}.

Further, using the fact that θ(ε−φ(1)) = [(2, 3)(5, 4)]θ(εφ(1))[(2, 3)(5, 4)]−1 holds for all

φ ∈ C2, these calculations also settle the cases

(φ, ψ) ∈ {(β,−α), (α + β,−α), (2α + β,−α)}.

Next, consider the case φ = β. First, consider ψ = α + β. Indeed

(θ(εβ(1)), θ(εα+β(1))) = [(1, 2)(3, 5)(4, 6)] · (4, 6) · [(1, 2)(3, 5)(4, 6)]−1 · (4, 6) = 1
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holds. Next, assume ψ = 2α + β and indeed

(θ(εβ(1)), θ(ε2α+β(1))) = (1, 2) · (4, 6) · (1, 2) · (4, 6) = 1

holds. Next, assume ψ = −α− β. Then

(θ(εβ(1)), θ(ε−α−β(1))) = [(1, 3)(2, 4)(5, 6)] · (4, 6) · [(1, 3)(2, 4)(5, 6)]−1 · (4, 6) = (2, 5)(4, 6)

= (1, 3) · (1, 3)(2, 5)(4, 6) = θ(ε−2α−β(1))θ(ε−α(1))

holds. For ψ = −2α− β, we obtain

(θ(εβ(1)), θ(ε−2α−β(1))) = (1, 3) · (4, 6) · (1, 3) · (4, 6) = 1.

This settles the case φ = β and similarly to the case φ = α, also settles the cases of

(φ, ψ) ∈ {(α + β, β), (2α + β, β), (α + β,−β), (2α + β,−β)}.

Next, consider the case φ = α+β. The only remaining cases for this φ are ψ = 2α+β

and ψ = −2α− β. Observe that

(θ(εα+β(1)), θ(ε2α+β(1))) = [(1, 2)(3, 5)(4, 6)] · (1, 2) · [(1, 2)(3, 5)(4, 6)]−1 · (1, 2) = 1

and

(θ(εα+β(1)), θ(ε−2α−β(1))) = [(1, 2)(3, 5)(4, 6)] · (1, 3) · [(1, 2)(3, 5)(4, 6)]−1 · (1, 3)

= (2, 5)(1, 3) = (4, 6) · (1, 3)(2, 5)(4, 6) = θ(εβ(1))θ(ε−α(1)).

This settles the case φ = α+β and by similar considerations as in the previous cases also

settles the cases

(φ, ψ) ∈ {(2α + β, α + β), (2α + β,−α− β)}.

We are left with the case φ = 2α+β, but all possibilities for ψ have already been addressed

in the previous cases. Thus indeed θ extends to a homomorphism

θ : Sp4(F2)→ S6.

Next, we will show that θ is surjective. To this end let H be the image of θ. Note that

S6 is generated by its transpositions (i, j) for 1 ≤ i < j ≤ 6 and further

(6, i)(6, j) = (i, j)
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holds. Thus S6 is generated by the transpositions (6, i) for 1 ≤ i < 6. Hence to show the

surjectivity of θ it su�ces to prove that all transpositions (6, i) for 1 ≤ i < 6 are elements

of H. To this end observe that

θ(εα(1))θ(εβ(1))θ(εα(−1)) = [(1, 2)(3, 4)(5, 6)] · (4, 6) · [(1, 2)(3, 4)(5, 6)]−1 = (3, 5)

is an element of H and hence (3, 5) · θ(ε−β(1)) · (3, 5) = (3, 5)(5, 6)(3, 5) = (3, 6) is an

element of H. Thus θ(εβ(1)) · (3, 6) · θ(εβ(1)) = (4, 6)(3, 6)(4, 6) = (3, 4) is an element of

H as well. But then

θ(εα(1))θ(ε−β(1))(3, 4) = (1, 2)(3, 4)(5, 6)(5, 6)(3, 4) = (1, 2)

is an element of H. Similarly

θ(ε−α(1))θ(ε−β(1))θ(ε−α(−1)) = (1, 3)(2, 5)(4, 6)(5, 6)[(1, 3)(2, 5)(4, 6)]−1 = (2, 4)

is an element of H and so (2, 4) · θ(εβ(1)) · (2, 4) = (2, 4)(4, 6)(2, 4) = (2, 6) is an element

of H. Thus (1, 2)(2, 6)(1, 2) = (1, 6) is an element of H. So, indeed all the transpositions

(1, 6), (2, 6), (3, 6), (4, 6) = θ(εβ(1)) and (5, 6) = θ(ε−β(1)) are elements of H and so

H = S6 holds and hence θ is surjective.

On the other hand, S6 has 6! = 720 elements and Sp4(F2) has

24 · (22 − 1) · (24 − 1) = 16 · 3 · 15 = 720

elements according to [41, Chapter 9, p. 77, Theorem 25]. Thus θ can only be surjective,

if it is injective as well and this �nishes the proof of the existence of an isomorphism θ as

described. However, uniqueness of θ is clear, because {εφ(1)|φ ∈ C2} is a generating set

of Sp4(F2) and θ is de�ned on them.

Remark B.0.2. The group Sp4(F2) acts on the set of maximal subsets M of F4
2−{0} with

the property that any two distinct v, w elements of M have the property ω(v, w) = 1 for

ω the symplectic structure �xed by Sp4(F2). There are six such sets M and an analysis

of the permutation of those six sets by Sp4(F2) yields the isomorphism θ.

Next, we show:

Proposition B.0.3. Let φ ∈ C2 be given. Then E := εφ(1) normally generates Sp4(F2)

and ‖Sp4(F2)‖E = 5 holds.

Proof. First, after conjugation we may assume that φ is a positive simple root in C2.

Then as mentioned in [41, Chapter 86, p. 86, Example (b)], there is an automorphism j
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of Sp4(F2) with

j(εα(1)) = εβ(1).

Hence we may further assume that φ = β. Then using the isomorphism θ from Proposi-

tion B.0.1 implies that we have to show that the transposition (4, 6) normally generates

S6 and that ‖S6‖(4,6) = 5 holds. However, the group S6 has only three normal subgroups

{1}, A6 and S6 and (4, 6) is not an element of A6 and hence must normally generate S6.

Obviously, any conjugate of a transposition is again a transposition and hence it su�ces

to show that there are elements in S6 that cannot be written as a product of four trans-

positions to prove ‖S6‖(4,6) ≥ 5. To see this, observe that for σ ∈ S6, the number of orbits

of the induced group action of 〈σ〉 on {1, . . . , 6} only depends on the conjugacy class of

σ in S6 instead of on the permutation σ itself. However, for k ∈ {1, . . . , 5}, a product

of k transpositions in S6 has at least 6 − k such orbits in {1, . . . , 6}. Thus the cyclce

(1, 2, 3, 4, 5, 6), which gives rise to just one such orbit, cannot be written as a product of

at most 4 transpositions.

But [7, Lemma 2.05, Lemma 2.06, Lemma 3.01] implies that the covering number of

S6 is at most 5 and hence

5 ≤ ‖S6‖(4,6) ≤ ∆1(S6) ≤ cn(S6) ≤ 5.

This �nishes the proof.
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Appendix C

Various proofs

Lemma 4.4.3. The sequences

1. s1 := (wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε, wφ, wβ, wδ, wγ, wα, wε) and

2. s2 := (wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ, wε, wα, wγ, wδ, wβ, wφ)

of fundamental re�ections in W (E6) give minimal expressions for the corresponding Weyl-

group elements w1, w2 ∈ W (E6) with respect to the fundamental re�ections and

w1(χ) = w2(χ) = γ and T (γ) = E+
6 − {α, β, δ, ε, φ, α + β, δ + ε}

Proof. One notes that the sequence s1 appears as a subexpression of the sequence given

for the longest word w0 ∈ W (E6) in Lemma 4.4.2. Thus s1 must be a minimal expression

for its corresponding Weyl-group element w1, because otherwise the expression for w0

could be shortened. Similarly, it follows that s2 is a minimal expression.

We denote the positive simple roots α, β, γ, δ, ε, φ by 1, 2, 3, 4, 5 and 6 and recall that

the corresponding Dynkin diagram looks as follows

543

6

21E6 :

For convenience and later reference, we arrange the positive, roots of E6 into a Hasse-

diagram where the vertices are the positive, roots of E6 and the label of the vertex denotes

how often the corresponding simple root appears in the expression of the root/vertex in

question. For example, the label (1, 1, 1, 0, 0, 1) denotes the root α+ β + γ + φ. The label

on the edge of the diagram denotes what simple root is the di�erence between the two

roots adjacent to the edge. Furthermore, the list of positive roots of E6 to be arranged

into the Hasse-diagram is taken from [18, Appendix, Table B, p. 528].
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123212

123211

122211

112211

012211 122101

112101

011111

111001

122111

112111

111111 012111

111101 111110 012101

111100 011101 011110 001111

111000 011100 011001 001101 001110

110000 011000 001100 001001 000110

100000 010000 001000 000100 000001 000010

6

3

2 4

4 1
2

5

3 5 1
4 2

5 1 6
3

1

3

5

6 4 1 5 6 2
5 1 3

4 1 6 1 6

4
25 2

5 6

3 1 4 2 6 2 6 4 35

2 1 3 2 4 3 6 3 5 4

Because the calculation of w1(χ) is rather lengthy, we will only show w1(χ) = γ. To

this end, observe that E6 is simply-laced and so if ψ ∈ E+
6 and θ a positive, simple root

are given, then wθ(ψ) is either ψ + θ, ψ − θ or ψ, depending on whether the vertex of

the Hasse-diagram corresponding to ψ is incident to an edge labeled by θ connecting to a

vertex of higher or lower weight respectively or is not incident to an edge labeled by θ at

all. Observe as a consequence:

w1(χ) = wαwεwφwβwδwγwαwεwφwβwδwγwαwεwφwβwδwγwαwε(α + 2β + 3γ + 2δ + ε+ 2φ)

= wαwεwφwβwδwγwαwεwφwβwδwγwαwεwφ(α + 2β + 3γ + 2δ + ε+ 2φ)

= wαwεwφwβwδwγwαwεwφwβwδwγwαwε(α + 2β + 3γ + 2δ + ε+ φ)

= wαwεwφwβwδwγwαwεwφwβwδwγ(α + 2β + 3γ + 2δ + ε+ φ)

= wαwεwφwβwδwγwαwεwφwβwδ(α + 2β + 2γ + 2δ + ε+ φ)

= wαwεwφwβwδwγwαwεwφwβ(α + 2β + 2γ + δ + ε+ φ)

= wαwεwφwβwδwγwαwεwφ(α + β + 2γ + δ + ε+ φ)

= wαwεwφwβwδwγwαwε(α + β + 2γ + δ + ε+ φ)

= wαwεwφwβwδwγwα(α + β + 2γ + δ + φ)

= wαwεwφwβwδwγ(β + 2γ + δ + φ)

= wαwεwφwβwδ(β + γ + δ + φ)

= wαwεwφwβ(β + γ + φ)

= wαwεwφ(γ + φ) = wαwε(γ) = γ

192



The fact that T (γ) = E+
6 − {α, β, δ, ε, φ, α + β, δ + ε} can be seen by inspection of the

Hasse diagram.

Lemma 5.1.6. Let R be a principal ideal domain. Then R has stable range at most 2.

Proof. Let m ≥ 2 be given and let v0, . . . , vm ∈ R be given with (v0, . . . , vm) = R. Let S

be the prime divisors of (v1, . . . , vm) and let T be the prime divisors of (v2, . . . , vm) that

are not also prime divisors of v1. Obviously T and S do not intersect. So according to the

Chinese Remainder Theorem, there is a x ∈ R such that

∀p ∈ S : x ≡ 1 mod p

∀q ∈ T : x ≡ 0 mod q

Then consider the ideal I := (v1−xv0, v2, . . . , vm) in R. Assume that this is ideal is not R.

Then there is a prime divisor h of I. Then clearly h divides the ideal (v2, . . . , vm) as well.

But if h would not divide v1, then it would be an element of T and hence h divides x. But

h also divides v1 − xv0, so we can conclude that h must also divide v1, a contradiction.

So h must divide v1.

But if h divides v1, then h is an element of S. Further h also divides v1−xv0 and so h

also divides xv0. But h is an element of S, so we have x ≡ 1 mod h and so in particular

v0 = 1 · v0 ≡ xv0 ≡ 0 mod h

follows. So h also divides v0 and so h divides (v0, v1, . . . , vm) = R, a contradiction. Thus

(v1 − xv0, v2, . . . , vm) = R holds.

Proposition 6.2.3. Let D be a square-free integer, R′ the ring of algebraic integers in

the number �eld Q[
√
D] and S a �nite set of non-zero prime ideals in R′. De�ne

R := {a/b| a ∈ R′, b ∈ R′ − {0}, { prime divisors of bR′} ⊂ S}.

Then R is 2R−pseudo-good if and only if at least one of the following conditions hold

1. The set S contains a prime-divisor of 2R or

2. D ≡ 5 mod 8 and D > 0 or

3. D ≡ 5 mod 8 and S 6= ∅ or

4. D = −3.

Proof. First, we will show that at least one of the above conditions must hold if R is

2R-pseudo-good. Observe that R being 2R-pseudo-good implies that R/2R must be a

�eld or trivial. Hence 2R must be either be a prime ideal in R or 2 must be a unit. If 2
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is a unit in R, then S contains all prime-divisors of 2R′ and this corresponds to the �rst

condition.

So we may assume that 2R is a prime ideal in R. According to [28, Theorem 25] in

the ring of algebraic integers R′ there are three possible options for the behaviour of the

ideal 2R′ :

1. 2R′ is inert precisely if D ≡ 5 mod 8.

2. 2R′ rami�es precisely if D ≡ 2, 3, 6, 7 mod 8.

3. 2R′ splits precisely if D ≡ 1 mod 8.

Assume �rst that 2R′ is already a prime ideal in R′, then D ≡ 5 mod 8. If D > 0, then

we are in the second condition. So assume D < 0. If S = ∅, then R = R′. Note, that all

rings of quadratic integers for negative D have only two units if D 6= −3, namely 1 and

−1. But the quotient R/2R has four elements, so if S = ∅ and D < 0, then R can only

be 2R-pseudo-good if D = −3. This corresponds to the fourth condition.

So we may assume D < 0, D ≡ 5 mod 2R and S 6= ∅. This corresponds to the third

condition.

Second, assume 2R′ rami�es and choose a prime P with 2R′ = P2. But 2R is a prime

ideal. There are two options now: Either S contains P or not. But if S contains P , then
2 is a unit and we assumed that is not the case. But if S does not contain P , then 2R

is not a prime ideal, because it has the prime-divisor RP of multiplicity 2. So this case

cannot occur.

Third, assume 2R′ splits and choose two distinct primes P1,P2 with 2R′ = P1 · P2. If

S does not contain P1 or P2, then 2R is still not a prime ideal in R, because it has the

two distinct prime divisors RP1 and RP2. So for R to be 2R-pseudo-good, the set S must

contain at least one of the prime-ideals P1 or P2 and this corresponds to the �rst condi-

tion. So at least one of the conditions named is necessary for R to be 2R-pseudo-good.

Next, we are going to show, that they are also su�cient. First assume, that S contains

a prime-divisor P of 2R′. Either 2R′ is inert, rami�ed or split. If 2R′ is inert, than P = 2R′

and hence 2 is a unit in the localization R. Thus R is trivially 2R-pseudo-good. Similarly,

if 2R′, rami�es, then R′ is also 2R-pseudo-good. On the other hand, if 2R′ splits, say

as 2R = P1P2, then we may assume P = P2. But then in the localization R, we have

2R = RP1 and so R/2R = R′/P1 = F2. But clearly {1, 0} are a set of coset representatives
of 2R in R showing 2R-pseudo-goodness.

Second, assume D ≡ 5 mod 8 and D > 0. In this case 2R′ is a prime-ideal and so we

may assume 2R′ /∈ S. Furthermore, we have R/2R = R′/2R′ = F4. Thus it su�ces to

consider the case S = ∅. As D > 0 and S = ∅ holds, according to [32, Corollary 11.7] the
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group of units R∗ of R is equal to the direct product {1,−1} × {uk|k ∈ Z} for a u ∈ R∗

called afundamental unit.

We will show 2R-pseudo-goodness, by demonstrating that for this fundamental unit

u ∈ R∗, the set {0, 1, u, u−1} is a set of coset-representatives of 2R in R. To prove this

it su�ces to show u 6≡ 1 mod 2R, because clearly both u−1 ≡ 1 mod 2R and u−1 ≡
u mod 2R would imply u ≡ 1 mod 2R. So, choose a, b ∈ Z such that

u =
a+ b

√
D

2
.

First, a is odd, because otherwise both a and b would be even and hence 2 would divide

u, which is impossible, because u is a unit and hence has no prime divisors.

Thus trQ[
√
D]|Q(u) = a is an odd integer. Furthermore NQ[

√
D]|Q(u) is either 1 or −1.

Hence both coe�cients of the characteristic polynomial

χu(T ) = T 2 − trQ[
√
D]|Q(u)T +NQ[

√
D]|Q(u) = T 2 − aT ± 1 ∈ Z[T ]

are odd. Thus the image ū of u in R/2R satis�es the polynomial equation

0 = ū2 + ū+ 1.

But an element ū with this property cannot be equal to the image of 1 in R/2R. Hence

if D ≡ 5 mod 8 and D > 0, then R is 2R-pseudo-good.

Third, assume D ≡ 5 mod 8 and S 6= ∅. Further we may assume D < 0 and that S

does not contain 2R′. Then pick a prime P ∈ S and an element u ∈ P without other

prime-divisors apart from P . Further pick a, b ∈ Z with

u =
a+ b

√
D

2
.

If a were to be even, then as before we would obtain that 2 would divide the element u,

which would imply 2R′ = P , a contradiction to 2R′ not an element of S. So trQ[
√
D]|Q(u) =

a must be an odd integer. On the other hand

NQ[
√
D]|Q(u) =

a+ b
√
D

2

a− b
√
D

2
.

is an element of P ∩ Z. However, if there were a k ∈ Z with NQ[
√
D]|Q(u) = 2k, then this

would imply u ∈ 2R′ and this is impossible, because it would imply 2R′ = P again. Thus

NQ[
√
D]|Q(u) is necessarily an odd integer. But trQ[

√
D]|Q(u) and NQ[

√
D]|Q(u) both being

odd integers implies again that the image ū of u in R/2R solves the equation

0 = ū2 + ū+ 1
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and hence u 6≡ 1 mod 2R. But u is a unit in R and this implies as before that {0, 1, u, u−1}
is a set of coset-representatives of 2R in R showing 2R-pseudo-goodness of R.

Lastly, assume D = −3. We may assume S = ∅ and hence R′ = R. Observe that

u :=
1 +
√
−3

2
∈ R

is a unit in R and that {0, 1, u, u−1} is a set of coset-representatives of 2R in R demon-

strating 2R-pseudo-goodness of R.
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