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Abstract
This thesis constructs unbounded quasimorphisms that are invariant under all automorphisms on
free products of groups and on graph products of finitely generated abelian groups. Moreover,
we prove that the space of such quasimorphisms is infinite dimensional for these groups. Our
constructions apply to many classes of right angled Artin and right angled Coxeter groups.
We discuss various geometrically arising families of graphs as examples and deduce the non-
triviality of an invariant analogue of stable commutator length recently introduced by Kawasaki
and Kimura for these groups.
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Aut-invariant quasimorphisms on free products and generalisations

1 Introduction

The study of quasimorphisms on a given group G is an important branch of geometric group
theory with quasimorphisms carrying deep information of the underlying structure of the group
G. A quasimorphism is a map q : G→ R satisfying |q(gh)− q(g)− q(h)| ≤ D for all g, h ∈ G
where D ≥ 0. It is called homogeneous if q(gn) = n ·q(g) for all g ∈ G. Quasimorphisms have
a very wide range of applications. They can be used to study the growth of normal generating
sets of G, the structure of diffeomorphism groups, the dynamics in symplectic geometry and
have relationships with algebraic invariants like the stable commutator length and the bounded
cohomology of G. Quasimorphisms can even be used as a way of constructing the real numbers
from the integers [A’Ca03].

For free groups Fn the so-called counting quasimorphisms originating from the work of
Brooks in [Bro81] yield a wide variety of examples. His ideas have been developed further by
Calegari and Fujiwara who constructed unbounded quasimorphisms on non-elementary hyper-
bolic groups [CaFu10]. Another rich source of examples are diffeomorphism groups and groups
of diffeomorphisms that preserve additional structures like symplectomorphisms or Hamilto-
nian diffeomorphisms. For diffeomorphism groups of surfaces many important constructions
are given in [GaGh04]. Quasimorphisms on mapping class groups of surfaces are for exam-
ple discussed in [Kot04]. Numerous applications of quasimorphisms in symplectic geometry
originate from work of Entov and Polterovich [EnPo03] together with Py [EPP12]. Branden-
bursky proved many results involving quasimorphisms on groups of Hamiltonian diffeomor-
phisms [Bra15] and applications of quasimorphisms to dynamics are flourishing [FOOO19].
A fundamental paper on the geometry of quasimorphisms and central extensions is [BaGh92].
As a whole, finding quasimorphisms and studying stable commutator length has been an inten-
sively researched area and remains a very active topic of research today even for the case of
surface diffeomorphism groups [BHW21].

From the viewpoint of classical group theory many questions about the properties of a given
group G concern the growth behaviour of normal generating sets of G. In the case of finite
groups these questions have been extensively studied [LiPy97] and strong results for the case
that G is simple had already been established in the 1970s and before, for example by Brenner
et al. in a series of nine papers under the title "Covering theorems of finite nonabelian simple
groups". The Ore conjecture for which the last remaining cases were famously established
in [LOST10] states that in fact every element in the commutator subgroup of a finite simple
group can be expressed as a single elementary commutator. From this algebraic perspective
quasimorphisms can be perceived as a simple tool to study the growth behaviour of normal
generating sets for infinite groups G.

Indeed, the word norm of any normal generating set S of a group G defines a so-called
conjugation invariant norm. That is, a map ‖.‖ : G→ R≥0 that vanishes only on the neutral ele-
ment, is invariant under inverting elements and conjugation and satisfies the triangle inequality.
The existence of an unbounded quasimorphism that is bounded on the generating set S implies
that this word norm becomes arbitrarily large on powers of some elements in G. In particular,
it implies that the word norm defined by S has infinite diameter on G.

In the context of geometric group theory conjugation invariant norms often arise from ge-
ometrically meaningful generating sets S. For example, for diffeomorphism groups the frag-
mentation norm is a conjugation invariant norm measuring how a given quasimorphism on a
manifold can be decomposed into quasimorphisms that are each supported on a ball in that
manifold. The so-called Hofer norm is a conjugation invariant norm measuring decomposabil-
ity for Hamiltonian diffeomorphisms. In [KKMT21] the author proved together with Kedra,
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Marcinkowski and Trost, that the generating set of closed geodesics defines unbounded conju-
gation invariant norms on hyperbolic manifolds that admit a certain geodesic symmetry. How-
ever, the existence of an unbounded conjugation invariant norm on a groupG does not imply the
existence of an unbounded quasimorphism on G as we will see in Section 2.1. An interesting
example, the commutator subgroup of the infinite braid group, is discussed in [BrKe15].

In the case of the commuator subgroup of a group the notion of a conjugation invariant
word norm generated by the elementary commutators ofG leads to so-called commutator length
cl : [G,G]→ R≥0. In fact, historically, quasimorphisms were used to provide the first examples
of perfect groups in which the commutator length is not a bounded function; that is, perfect
groups which are not uniformly perfect. By taking the limit of the powers of a given element one
obtains the stable commutator length scl(g) = lim cl(gn)

n
for g ∈ G. A very thorough analysis of

this invariant was given by Calegari in [Cal09]. Quasimorphisms share a deep relationship with
the stable commutator length via Bavard’s duality theorem [Bav91]. This theorem states that
scl(g) = 1

2
sup |φ(g)|

D(φ)
for all g ∈ G where the supremum is taken over the space of homogeneous

quasimorphisms modulo the space of homomorphisms on G.
The study of quasimorphisms is instrumental for the theory of bounded cohomology on G

since the second bounded cohomology group of G can be identified with the space of homoge-
neous quasimorphisms modulo the space of homomorphisms on G. As such they provide vital
information for understanding the geometry of a group via machinery from algebraic topology.
In fact, the information that the bounded cohomology of a topological space with real coeffi-
cients contains is completely encoded in the bounded cohomology of its fundamental group.
However, computations in bounded cohomology are in general more difficult than in standard
group cohomology. Especially for the case of the free group of rank two there have been many
recent attempts to fully determine the cup product structure on H2

b (F2,R) for various classes of
quasimorphisms [Heu17], [BuMo18], [Fou20].

In this thesis we construct unbounded Aut-invariant quasimorphisms that are invariant under
the action of automorphisms on free products of groups and graph products of finitely generated
abelian groups. In Section 2 we introduce basic terminology, discuss initial examples and give
general constructions how to construct new quasimorphisms from old ones. After recalling the
structure of the automorphism group of a free product of groups in Section 3 we proceed to
give our first constructions of Aut-invariant quasimorphisms on free products of two factors
in Section 4. To achieve this we associate tuples of natural numbers that we call codes to
each element in a free product G = A ∗ B. Inspired by Brooks’s counting quasimorphisms
on free groups we then count occurences of these codes rather than occurences of words in
the free product. We verify that this indeed yields quasimorphisms on G and call them code
quasimorphisms. Using an explicit description of the automorphism group Aut(G) found in
[Gil87] we see in Proposition 4.11 that our code quasimorphisms are unbounded and invariant
with respect to all automorphisms of G if A and B are not infinite cyclic.

If one of the factors of G = A ∗ B is infinite cyclic, our code quasi-morphisms are not
necessarily invariant under a specific class of automorphisms of G which is called the class of
transvections. So, in Section 5 we slightly adjust the way we count codes for infinite cyclic
factors and call the resulting maps weighted code quasimorphisms. We show in Proposition 5.7
that these are unbounded and invariant with respect to all automorphisms of G.

These two propositions together with an independent result for the free group on two gen-
erators from [BrMa19, Theorem 2] comprise the following result in Section 6.

Theorem (6.1). Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups A and B. Assume G is not the infinite dihedral group. Then G admits infinitely many
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Aut-invariant quasimorphisms on free products and generalisations

linearly independent homogeneous Aut-invariant quasimorphisms, all of which vanish on single
letters.

The infinite dihedral group does not admit an unbounded quasimorphism since all its ele-
ments are conjugate to their inverses. As a corollary of our construction we can immediately
deduce the existence of stably unbounded Aut-invariant norms on free products of two factors.

Corollary (6.2). Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups and assume G is not the infinite dihedral group. Then there exists a stably unbounded
Aut-invariant norm on G.

In Section 7 we proceed to generalise these results to free products of more than two factors
and obtain the following theorem.

Theorem (7.3). Let G = G1 ∗ · · · ∗ Gk be a free product of freely indecomposable groups Gi

where k ≥ 2. Assume that at most two factors are infinite cyclic and there exists j ∈ {1, . . . , k}
such that Gj � Z/2. Then G admits infinitely many linearly independent homogeneous Aut-
invariant quasimorphisms, all of which vanish on single letters.

In Section 8 we proceed by considering graph products and their automorphism groups.
Graph products generalise the construction of a free product by introducing commutator rela-
tions according to the edges of an underlying graph Γ. In Section 9 we define an equivalence
relation ∼τ on the vertex set of Γ which encodes the existence of a special class of automor-
phisms of the graph product. The notion of lower cones from [Mar20] and an explicit descrip-
tion of the automorphism group of graph products of finitely generated abelian groups given in
[CoGu09] enables us to construct unbounded quasimorphisms that are invariant under a finite
index subgroup Aut0(G) ≤ Aut(G), where G is a graph product of finitely generated abelian
groups. An averaging procedure will then produce Aut(G)-invariant quasimorphisms that are
still unbounded. For the case of right angled Artin groups we prove the existence of unbounded
Aut-invariant quasimorphisms for many classes of graphs in Proposition 9.23 from which we
obtain the following theorem as a special case.

Theorem (9.24). Let Γ = (V,E) be a finite graph with |V | ≥ 2 and such that no two distinct
vertices x, y ∈ V satisfy lk(v) ⊂ st(v). Then the right angled Artin group RΓ admits infinitely
many linearly independent homogeneous Aut-invariant quasimorphisms.

Our construction yields unbounded Aut-invariant quasimorphisms for a very large class of
graph products of finite abelian groups in Theorem 9.27 answering questions from [Mar20] on
their existence. From this we deduce the following theorem.

Theorem (9.30). Γ = (V,E) be a finite graph that is not complete and letWΓ be a graph product
of finite abelian groups on Γ. If there are no two vertices v, w ∈ V such that Gv = Gw = Z/2
and lk(v) = lk(w), then WΓ admits infinitely many linearly independent homogeneous Aut-
invariant quasimorphisms.

As examples we discuss various families of graphs of geometric origin explicitly in Section
10. In Section 11 we turn to the so-called Aut-invariant stable commutator length that was
recently introduced by Kawasaki and Kimura in [KaKi20] and was also shown to satisfy an
invariant analogue of Bavard’s duality theorem. We explicitly construct elements on which this
invariant is non-trivial for free products as well as many graph products among which are the
ones considered in both theorems above. For example, in the case of free products of two factors
we conclude the following theorem.
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Theorem (11.6). LetG = A∗B be a free product of freely indecomposable groups and assume
that G is not the infinite dihedral group. Then there always exist elements g ∈ G with positive
Aut-invariant stable commutator length sclAut(g) > 0.

Finally, there are two appendices to this thesis. In Appendix A we explain how one can al-
ready obtain unbounded Aut-invariant quasimorphisms on free products of two non-isomorphic
finite groups purely from Brooks’s quasimorphisms. In Appendix B we prove that the spaces
of homogeneous Aut-invariant quasimorphisms on the braid group B3, the special linear group
SL(2,Z) and the projective special linear group PSL(2,Z) are isomorphic.

Note that large parts of my results on Aut-invariant quasimorphisms of free products of two
factors are encapsulated in my research paper [Kar21(1)], whereas large parts of my results on
graph products are consolidated in my research paper [Kar21(2)].

2 Preliminaries
Definition 2.1. Let G be a group. Denote by Aut(G) the group of all automorphisms of G.
Furthermore, denote the normal subgroup of inner automorphisms by Inn(G) and the group of
outer automorphisms by Out(G) = Aut(G)/ Inn(G).

Definition 2.2. A subgroup H ≤ G is called characteristic if ϕ(H) = H for all ϕ ∈ Aut(G).

Definition 2.3. A group homomorphism f : G → H is called Aut-equivariant if for all auto-
morphisms ϕ ∈ Aut(G) there exists ϕ0 ∈ Aut(H) such that f ◦ ϕ = ϕ0 ◦ f .

Definition 2.4. Let G be a group. A map ψ : G → R is called a quasimorphism if there exists
a constant D ≥ 0 such that

|ψ(g) + ψ(h)− ψ(gh)| ≤ D for all g, h ∈ G.

The defect of ψ is defined to be the smallest number D(ψ) with the above property. A quasi-
morphism is homogeneous if it satisfies ψ(gn) = nψ(g) for all g ∈ G and all n ∈ Z. Further, ψ
is called Aut-invariant if ψ(ϕ(g)) = ψ(g) for all g ∈ G, ϕ ∈ Aut(G).

It follows from the definition that sums and scalar multiples of (homogeneous) quasimor-
phisms are (homogeneous) quasimorphisms again. It is immediate that homogeneous quasimor-
phisms vanish on elements of finite order. Moreover, homogeneous quasimorphisms are con-
stant on conjugacy classes since for a homogeneous quasimorphism ψ : G → R and g, h ∈ G
we calculate

|ψ(g)− ψ(hgh−1)| =
∣∣∣∣limn∈N ψ(gn)

n
− lim

n∈N

ψ((hgh−1)n)

n

∣∣∣∣ = lim
n∈N

|ψ(gn)− ψ(hgnh−1)|
n

≤ lim
n∈N

2Dψ

n
,

which implies ψ(g) = ψ(hgh−1).

Definition 2.5. Let ψ : G → R be a quasimorphism. The homogenisation ψ̄ : G → R of ψ
is defined to be ψ̄(g) = limn∈N

ψ(gn)
n

for all g ∈ G. To improve legibility we will denote the
homogenisation of a quasimorphism with upper subscripts ψG by ψ̄G instead of ψ̄G.

Lemma 2.6 ([Cal09, p.18]). The homogenisation ψ̄ of a quasimorphism ψ : G→ R is a homo-
geneous quasimorphism. Moreover, it satisfies |ψ̄(g)− ψ(g)| ≤ D(ψ) for any g ∈ G.
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Aut-invariant quasimorphisms on free products and generalisations

Definition 2.7. A function ν : G→ R satisfying for all g, h ∈ G:

• ν(g) ≥ 0,

• ν(g) = 0 if and only if g = 1,

• ν(gh) ≤ ν(g) + ν(h),

is called a norm on G. If in addition for all g ∈ G and ϕ ∈ Aut(G) it satisfies

• ν(ϕ(g)) = ν(g),

then it is called Aut-invariant. The supremum ν(G) = sup{ν(g) | g ∈ G} is called the
diameter of the norm ν. If ν(G) = ∞, then ν is called unbounded. If there exists g ∈ G such
that limn→∞

ν(gn)
n

> 0, then ν is called stably unbounded.

Example 2.8. Let G be a group together with a generating set S. The word norm generated by
S is the norm on G defined by

νS(g) = min{n | g = s1 · · · sn where n ∈ N and si ∈ S for all i}.

If we assume additionally that the set S is invariant under Aut(G) then νS is Aut-invariant.

Lemma 2.9. Let ψ : G → R be an Aut-invariant quasimorphism with unbounded image, but
bounded on a generating set S of G. Then there exists a stably unbounded Aut-invariant norm
on G.

Proof. By Lemma 2.6 we can assume that ψ is homogeneous. The word norm ‖.‖S̄ on G
associated to the generating set S̄ = {ϕ(s) | s ∈ S, ϕ ∈ Aut(G)} is clearly Aut-invariant. Let
K be a positive bound for the absolute value of ψ on S. Write g ∈ G as a product of these
generators g = ϕ1(s1) · · ·ϕn(sn) for some n ∈ N where si ∈ S and ϕi ∈ Aut(G) for all i. The
calculation

|ψ(g)| = |ψ(ϕ1(s1) · · ·ϕn(sn))| ≤ |ψ(ϕ1(s1))|+ · · ·+ |ψ(ϕn(sn))|+ (n− 1)D(ψ)

≤ n(K +D(ψ))

shows that ‖g‖S̄ ≥
|ψ(g)|

K+D(ψ)
for all g ∈ G. It follows that ‖gk‖S̄ ≥ k · |ψ(g)|

K+D(ψ)
for all k ∈ N,

g ∈ G. Since ψ does not vanish everywhere, ‖.‖S̄ is a stably unbounded Aut-invariant norm on
G.

2.1 Initial examples
Let us illustrate the question on the existence of Aut-invariant quasimorphisms by considering
some initial examples. In particular, let us see that the converse of Lemma 2.9 above is not
true and finding unbounded Aut-invariant quasi-morphisms is much more difficult than finding
unbounded Aut-invariant norms in general.

Example 2.10. Let Σ∞ be the infinite symmetric group of finitely supported bijections of the
natural numbers. The cardinality of the support defines an Aut-invariant norm of infinite di-
ameter on Σ∞. However, any element g ∈ Σ∞ has finite order. Therefore, no Aut-invariant
norm on Σ∞ is stably unbounded and any homogeneous quasi-morphism vanishes on all of
Σ∞. Consequently, by Lemma 2.6 any quasimorphism on Σ∞ is bounded.
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Example 2.11. Let G be an abelian group. Then G does not admit an unbounded Aut-invariant
quasimorphism. In fact, the inversion ι : G → G defined by ι(g) = g−1 is an automorphism
since G is abelian. Let ψ : G → R be an Aut-invariant quasimorphism. By definition ψ̄ is
Aut-invariant as well and by Lemma 2.6 ψ̄ is only a finite distance away from ψ. However,
ψ̄(g) = ψ̄(ι(g)) = ψ̄(g−1) = −ψ̄(g) for all g ∈ G. So ψ̄ vanishes and ψ was bounded to begin
with.

Example 2.12. Let G = Zk for k ≥ 1. For k = 1 the standard absolute value defines a stably
unbounded Aut-invariant norm on G, whereas for k ≥ 2 any Aut-invariant norm on G has finite
diameter.

Example 2.13. LetD∞ = Z/2∗Z/2 be the infinite dihedral group. Then (D∞)k does not admit
an unbounded Aut-invariant norm for any k ≥ 1. Indeed, any element in D∞ is the product of
at most two conjugates of the standard generating set. Consequently, any norm on D∞ that is
invariant under conjugation is bounded by twice the maximal value on the standard generating
set. Thus, for all k ≥ 1 any Aut-invariant norm on (D∞)k is bounded as well and (D∞)k cannot
admit an unbounded Aut-invariant quasimorphism by Lemma 2.9. The case of Z ≤ D∞ also
shows that quasimorphisms of finite index subgroups can in general not be extended to the full
group.

Example 2.14. Let G be the fundamental group of the Klein bottle G = Z ∗2Z Z. Let a and
b be generators of the two infinite cyclic factors of G in its above presentation. Consider the
Aut-invariant word norm νS generated by S = {ϕ(a±1), ϕ(b±1) | ϕ ∈ Aut(G)}. To see that
this norm is unbounded on G we first note that commutator subgroup of G is a characteristic
subgroup and G/[G,G] = Z/2× Z, where Z/2 is a characteristic subgroup. Consequently, the
projection map p : G → Z sending p(a) = p(b) = 1 is Aut-equivariant and maps the set S to
the Aut-invariant set {±1} in Z, which generates a stably unbounded Aut-invariant norm on Z.
Therefore, the word norm νS generated by S on G is stably unbounded as well.

However, there is no unbounded Aut-invariant quasimorphism on G. If ψ was such a quasi-
morphism, it could be chosen to be homogeneous by Lemma 2.6. Let ϕ be the automorphism
inverting the generators a and b. Then ϕ inverts the center Z(G) = 2Z as well. Hence, ψ van-
ishes on Z(G). Similarly, every element of S = {(ab)n, (ba)n, (ab)na, (ba)nb | n ∈ N} belongs
to the same Aut-orbit that its inverse belongs to. So ψ vanishes on S as well. However, every
element g ∈ G can be written as a product = zs where z ∈ Z(G) and s ∈ S. Therefore, ψ is
bounded on all of G.

Example 2.15. Let B3 be the braid group on three strands. Then the homomorphism B3 → Z
sending the standard generators to 1 is Aut-equivariant. Since the absolute value is an un-
bounded Aut-invariant norm on Z, this shows that the Aut-orbits of the standard generators and
their inverses generate an unbounded Aut-invariant norm on B3. However, since the non-trivial
outer automorphism of B3 inverts all standard generators, this map cannot be modified to con-
struct an unbounded quasimorphism on B3. We will see in Example 6.8 that B3 does admit
unbounded Aut-invariant quasimorphisms and we will further discuss the space of homoge-
neous Aut-invariant quasimorphisms on B3 in Appendix B.

2.2 Quasimorphisms on free products
Let I be an indexing set and let G = ∗i∈IGi be a free product of a family of groups {Gi}i∈I .
Via the canonical inclusion the factor Gi is a subgroup of G for each i ∈ I . An element of G
belonging to one of the factors is called a letter of G. A word in G is a product of letters in
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G. For any two letters belonging to the same factor in G their product in G can be replaced by
the letter that represents their product in that factor. Moreover, any letters that are the identity
in the factor they belong to can be omitted inside any word without changing the element that
word represents in G.

A word is called reduced if no two consecutive letters belong to the same factor and no let-
ters appear that represent the identity. Recall that every element g ∈ G has a unique presentation
as a reduced word. Finally, a word w is called cyclically reduced if all cyclic permutations if its
letters are reduced words. This is equivalent to w being reduced such that its first and last letter
belong to different factors.

Recall, that G has trivial center whenever there are at least two non-trivial free factors. In
fact, no two letters of different groups commute by the uniqueness of reduced presentations.
Moreover, if there was a non-trivial central element in G, we could choose a reduced represen-
tative w of a central element of minimal length `(w) ≥ 2. Then the first and last letter of w
belong to different factors since `(w) was not minimal to begin with otherwise. Let x be the first
letter of w. Then the reduced expressions of x−1w and wx−1 are different, which contradicts
the assumption of w representing a central element.

Definition 2.16. A group G is called freely indecomposable if G is non-trivial and not isomor-
phic to a free product of the form G1 ∗G2 where G1, G2 are non-trivial groups.

For example, every finite group is freely indecomposable since any free product of non-
trivial groups contains elements of infinite order. Every group with non-trivial center is freely
indecomposable since any free product of non-trivial groups has trivial center.

Lemma 2.17. Let I be a set of cardinality at least two. Let Gi be a non-trivial group for all
i and G = ∗i∈IGi be their free product. Let θ : G → R be a map whose absolute value is
bounded on all letters of G by a constant B ≥ 0. Assume that there exists a constant D ≥ 0
such that

|θ(w1w2)− θ(w1)− θ(w2)| ≤ D

holds for all reduced words w1, w2 for which their product w1w2 is a reduced word. Then the
map f : G → R defined by f(w) = θ(w) − θ(w−1) defines a quasimorphism of defect at most
12D + 6B, which is bounded on all letters by 2B.

Proof. Any element in G can be represented by a reduced word. So let w1, w2 be reduced
words. The word given by their product w1 · w2 is reduced if and only if the last letter from w1

belongs to a factor different from the one that the first letter of w2 belongs to. Indeed, otherwise
those two letters could be multiplied in their common factor and replaced by their product to
shorten the number of letters appearing in the expression.

In order to bring w1 · w2 to its reduced form we first perform all cancellations which form
a word we call c. After all cancellations have taken place the final potential reduction is to
possibly replace a non-trivial product of two letters b and d belonging to the same factor by a
non-trivial letter x representing their product in that factor. Therefore, we have two cases.

• The reduced presentations of w1 and w2 are given by w1 = ac, w2 = c−1e and ae is the
reduced presentation for w1 · w2.

• The reduced presentations of w1 and w2 are given by w1 = abc, w2 = c−1de, where b and
d are letters belonging to the same factor. The reduced presentation of w1 ·w2 is given by
axe, where x = bd is the letter representing the non-trivial product of b and d.
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We calculate for the second case that

|f(w1w2)−f(w1)− f(w2)| = |f(axe)− f(abc)− f(c−1de)|
=
∣∣θ(axe)− θ(e−1x−1a−1)− θ(abc) + θ(c−1b−1a−1)− θ(c−1de) + θ(e−1d−1c)

∣∣
≤|θ(a) + θ(x) + θ(e)− θ(e−1)− θ(x−1)− θ(a−1)− θ(a)− θ(b)− θ(c) + θ(c−1)

+ θ(b−1) + θ(a−1)− θ(c−1)− θ(d)− θ(e) + θ(e−1) + θ(d−1) + θ(c)|+ 12D

=|θ(x)− θ(x−1)− θ(b) + θ(b−1)− θ(d) + θ(d−1)|+ 12D

≤6B + 12D.

The first case follows analogously. Since w1, w2 were arbitrary reduced words and every ele-
ment ofG can be written in its reduced form, f is a quasimorphism of defect at most 6B+12D.
Since θ is bounded on all letters by B, so is f by 2B.

2.3 Brooks quasimorphisms
Let G = G1 ∗ · · · ∗Gk be a free product and let w be a reduced word in G. Let

cw(g) = number of disjoint occurrences of w in the reduced representative of g.

Clearly, cw satisfies the assumption of Lemma 2.17 and we call fBrw = cw−cw−1 a Brooks quasi-
morphism. However, note that Brooks originally introduced his quasimorphisms for free groups
in [Bro81] using counting functions Cw counting all occurrences of w in a reduced representa-
tive instead of just counting disjoint occurrences. We will only consider his quasimorphisms of
the form fBrw throughout this thesis.

Let w be a non-trivial word in a free group F . If w is a letter, then there exists a ho-
momorphism F → Z such that f(w) 6= 0. A conjugate w0 of w is cyclically reduced and
we assume that w0 has length ≥ 2. Then fBrw0

(wn0 ) = n since no element in a free group is
conjugate to its inverse. So the homomogenisation of fBrw0

satisfies f̄Brw0
(w) = f̄Brw0

(w0) 6= 0.
Thus, Brooks’s quasimorphisms show that in a free group every non-trivial element can be
detected by a quasimorphism. This is very particular for free groups. The following remark
shows that does not even remain true in more general free products like the hyperbolic group
PSL(2,Z) = Z/3 ∗ Z/2.

Remark 2.18. In general, there is no reason to assume that every element of infinite order in a
free product A ∗ B of freely indecomposable groups is detected by a homogeneous quasimor-
phism. For example, if b ∈ B has order two and a ∈ A is any non-trivial element, then the
word w = aba−1b has infinite order. However, w is conjugate to its inverse w−1 = baba−1 and
therefore any homogeneous quasimorphism vanishes on w.

2.4 New quasimorphisms from old ones
Lemma 2.19. Let ψ : G → R be a quasimorphism. Let {ϕi}i∈I be a set of representatives for
the elements of Out(G). If ψ is invariant under ϕi for all i, then its homogenisation ψ̄ : G→ R
is invariant under all automorphisms of G.

Proof. The homogenisation ψ̄ is constant on conjugacy classes [Cal09, p.19]. By definition ψ̄
is also invariant under the collection {ϕi}i∈I , since ψ is. The result follows since any element
ϕ ∈ Aut(G) can be written as the composition of some ϕj with a conjugation.
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Aut-invariant quasimorphisms on free products and generalisations

Lemma 2.20. Let H ≤ G be a subgroup of finite index k ∈ N and I = {g1, . . . , gk} be a set
of right coset representatives. So G =

⋃n
i=1 Hgi where the union is disjoint. Let g ∈ G be

arbitrary. For each i ∈ {1, . . . , k} we can write gig = higji uniquely where ji ∈ {1, . . . , k}
and hi ∈ H . Define

Jg = {gji ∈ I | ∃i ∈ {1, . . . , k} such that gig = higji where hi ∈ H}.

Then Jg = I .

Proof. Let g ∈ G. Since I is a system of coset representatives, the product of gi with g can
indeed be written for all i ∈ {1, . . . , k} as gig = higji where hi ∈ H and ji ∈ {1, . . . , k}. Then

G = Gg =
n⋃
i=1

Hgig =
n⋃
i=1

Hhigji =
n⋃
i=1

Hgji

where the union is disjoint. Therefore, the set Jg consisting of all gji appearing in this disjoint
union needs to contain all coset representatives. That is Jg = I independently of the choice of
g ∈ G.

Lemma 2.21. Let ψ : G→ R be a quasimorphism invariant under a subgroup H ≤ Aut(G) of
index k ∈ N. Let {f1, . . . , fk} be a set of right coset representatives. Let ψ̂ : G→ R be defined
by ψ̂(g) =

∑k
i=1 ψ(fi(g)) for all g ∈ G. Then ψ̂ is an Aut-invariant quasimorphism on G.

Proof. Clearly, ψ̂ is a quasimorphism as a finite sum of quasimorphisms. Let θ ∈ Aut(G) and
g ∈ G. For all i we can uniquely write fi ◦ θ = hi ◦ fji where ji ∈ {1, . . . , k} and hi ∈ H since
{f1, . . . , fk} is a set of right coset representatives of H in Aut(G). We calculate

ψ̂(θ(g)) =
k∑
i=1

ψ(fi(θ(g))) =
k∑
i=1

ψ((fi ◦ θ)(g)) =
k∑
i=1

ψ((hi ◦ fji)(g))

H-invariance of ψ
=

k∑
i=1

ψ(fji(g))
Lemma 2.20

=
k∑
i=1

ψ(fi(g)) = ψ̂(g).

The penultimate equality follows from the fact that due to Lemma 2.20 the set of all fji appear-
ing in

∑k
i=1 ψ(fji(g)) agrees with the set of all fi appearing in

∑k
i=1 ψ(fi(g)).

Remark 2.22. Note, that the Aut-invariant quasimorphisms constructed from finite index sub-
groups in Lemma 2.21 are not necessarily unbounded. For example, this fails for the integers
Z together with the identity map. We will in the following always verify unboundedness of
quasimorphisms constructed in this way separately.

Lemma 2.23. Let G be a group and H ≤ G be a characteristic subgroup with quotient projec-
tion p : G → G/H . Then for any unbounded Aut-invariant quasimorphism ψ : G/H → R the
composition ψ ◦p : G→ R is an unbounded Aut-invariant quasimorphism on G. Moreover, lin-
early independent quasimorphisms on G/H give rise to linearly independent quasimorphisms
on G.

Proof. Clearly, ψ◦p is a quasimorphism. The Aut-invariance of ψ◦p onG follows from the Aut-
invariance of ψ on G/H together with the fact that H is characteristic. Finally, the statement
about linear independence follows from the surjectivity of the projection to the quotient.
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3 Automorphism group of free products
Let G = G1 ∗ · · · ∗Gk be a free product of freely indecomposable groups. Then following the
exposition in [Gil87, p.116] based on results in [FoRa40] and [FoRa41] there are the following
classes of automorphisms that generate Aut(G).

1. Applying the automorphism of any factor Gi to that factor defines an automorphism of G
that is called a factor automorphism.

2. If two factors in G are isomorphic, interchanging those two factors defines an automor-
phism of G. Such an automorphism is called a swap automorphism.

3. Let g ∈ Gi for some i ∈ {1, . . . k}. Define the map pg : G→ G to be conjugation by g on
the letters of Gj for some j 6= i and to be the identity on all other letters. This definition
gives rise to an automorphism of G which is called a partial conjugation.

For each infinite cyclic factor Gi in G there are the following additional automorphisms:

4. Let s be a generator of Gi and let a ∈ Gj be a letter where j 6= i. Then a transvection is
the automorphism of G defined to be the identity on all letters belonging to factors that
are not Gi and sending s→ as or s→ sa

It was established in [FoRa40] and [FoRa41] that these classes generate the automorphism
group of a free product.

Theorem 3.1 (Fouxe-Rabinovitch). Let G = G1 ∗ · · · ∗ Gk be a free product of freely inde-
composable groups. Then Aut(G) is generated by the classes of swap automorphisms, factor
automorphisms, transvections and partial conjugations.

Definition 3.2. Denote by Aut0(G) the subgroup of a free product of freely indecomposable
groups G = G1 ∗ · · · ∗Gk generated by automorphisms of type 2–4.

In a free product G = G1 ∗ · · · ∗Gk any two choices of swap automorphisms interchanging
two factors Gi and Gj differ by a product of factor automorphisms of these factors. Since the
number of permutations of a finite set is finite one immediately concludes the following lemma.

Lemma 3.3. Let G = G1 ∗ · · · ∗ Gk be a free product of freely indecomposable groups. Then
Aut0(G) has finite index in Aut(G) with a system of coset representatives given by a choice of
permutations of the isomorphic free factors of G.

Following the above description of the group of automorphisms of a free product of two
factors we obtain:

Lemma 3.4. Let G1, G2 be freely indecomposable groups such that G2 is not infinite cyclic.
Then the outer automorphism group of their free product Out(G1 ∗ G2) is generated by the
images of Aut(G1), Aut(G2) in Out(G1 ∗G2) together with a swap automorphism if G1

∼= G2

and the transvections if G1
∼= Z.

Proof. By the universal property of the free product any automorphism of G1 ∗G2 is uniquely
determined by its image on single letters. Let h ∈ G1 and denote conjugation by h−1 on all of
G by ch. Then

(ch ◦ ph)(g) =

{
h−1gh if g ∈ G1,

g if g ∈ G2.

13
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Thus, ph and the factor automorphism given by conjugation by h−1 on G1 represent the same
element in Out(G). Similarly, in Out(G) partial conjugations on G1 by elements from G2

represent the same elements that factor automorphisms from G2 do. Finally, any two choices of
swap automorphism differ by a product of factor automorphisms.

4 Code quasimorphisms
Recall that a tuple always refers to a finite sequence and so all tuples are naturally ordered.

Definition 4.1. Let A and B be groups. Write a given element g ∈ A ∗ B in its reduced
form. We assign two tuples of non-zero natural number that we will call codes as follows.
Let (a1, . . . , ak) be the tuple of letters from A appearing in the reduced form of g. We call
(a1, . . . , ak) the A-tuple of g. Then we count how often any one letter of (a1, . . . , ak) appears
consecutively. This yields a tuple of positive numbers A-code(g) = (n1, n2, . . . , nr) which
we call the A-code of g. Similarly, we obtain the B-tuple, which is the tuple of letters from
B appearing in the reduced form of g, and the B-code of g, denoted B-code(g), by counting
consecutive appearances of letters in the B-tuple.

Note thatA-code(g) andB-code(g) might have very different length for elements g ∈ A∗B
in general.

Example 4.2. Let G = A ∗ B where A = Z/5 and B is any group. Let a ∈ A, b ∈ B be non-
trivial elements. Consider g = a2bababa4baba. The A-tuple of g is (a2, a, a, a4, a, a) and there-
foreA-code(g) = (1, 2, 1, 2). However, theB-tuple of g is (b, b, b, b, b) and soB-code(g) = (5).

Remark 4.3. The code of any element g ∈ A ∗ B is clearly invariant under all factor automor-
phisms.

The following lemma is immediate.

Lemma 4.4. The A-code and B-code of g−1 are the reversed A- and B-code of g for any
g ∈ A ∗ B. That is, let A-code(g) = (n1, . . . , nk) and B-code(g) = (m1, . . . ,m`), then
A-code(g−1) = (nk, . . . , n1) and B-code(g−1) = (m`, . . . ,m1).

In the spirit of Brooks counting quasimorphisms we will now define code quasimorphisms,
which are counting the occurrences of a string of natural numbers in the A-code and B-code
associated to an element in the free product A ∗B.

Definition 4.5 (Code quasimorphisms). Let k ≥ 1 and let z = (n1, . . . , nk) be a tuple of non-
zero natural numbers n1, . . . , nk for some k ∈ N. Let C ∈ {A,B}. Define θCz : A ∗ B → Z≥0

to count the maximal number of disjoint occurrences of z as a tuple of consecutive numbers in
the C-code for all g ∈ A ∗B. Further, define the code quasimorphism

fCz : A ∗B → Z by fCz (g) = θCz (g)− θCz (g−1)

for all g ∈ A ∗B. Note that θCz (g−1) = θCz̄ (g) due to Lemma 4.4, where z̄ denotes the reversed
tuple (nk, . . . , n1). Consequently, fCz (g) can also be written as fCz (g) = θCz (g) − θCz̄ (g) for all
g ∈ G.

Example 4.6. Let G = Z/5 ∗ B and g = a2bababa4baba for non-trivial a ∈ A, b ∈ B as
in Example 4.2. For z = (1, 2) we calculate θAz (g) = 2 and θAz (g−1) = θAz̄ (g) = 1 and so
fAz (g) = 2− 1 = 1.
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Example 4.7. Let G = Z/5 ∗ B and g = a4bababa3bababa3 for non-trivial a ∈ A, b ∈ B. In
this case A-code(g) = (1, 2, 1, 2, 1). Then θAz (g) = 1 for z = (1, 2, 1) since we only count
disjoint occurrences. Similarly, θAz (g−1) = θAz̄ (g) = 1 and so fAz (g) = 0.

Lemma 4.8. Let A, B be non-trivial groups and let C ∈ {A,B}. For a non-empty tuple of
non-zero natural numbers z the map fCz : A ∗B → Z defines a quasimorphism that is bounded
on letters and invariant with respect to all factor automorphisms. Moreover, D(fCz ) ≤ 30.

Proof. We want to apply Lemma 2.17 to deduce that fCz is a quasimorphism. Clearly, for all
letters x ∈ A ∗ B and all z we have |θCz (x)| ≤ 1. Let w1, w2 be reduced words representing
elements in A ∗ B such that their product w1w2 is reduced. That is, the last letter of w1 and the
first letter of w2 belong to different factors. Without loss of generality we can assume C = A.
Let A-code(w1) = (n1, . . . , nk) and A-code(w2) = (m1, . . . ,m`). Let x be the last letter from
A in w1 and let y be the first letter from A in w2. Then

A-code(w1w2) =

{
(n1, . . . , nk,m1, . . . ,m`) if x 6= y,

(n1, . . . nk−1, nk +m1,m2, . . . ,m`) if x = y.

If x 6= y, then θCz (w1w2) ∈ {θCz (w1) + θCz (w2), θCz (w1) + θCz (w2) + 1} since at most one of
the disjoint occurrences of z can involve numbers that do not lie completely in the A-code of
either w1 or w2.

If x = y, then θCz (w1w2) ≥ θCz (w1) + θCz (w2) − 2 since nk and m1 can each be contained
in at most one occurrences of z in the A-code of w1 and w2. Moreover, if an occurrence of z in
the A-code of w1w2 involves nk + m1, then all other occurrences are fully contained in either
the A-code of w1 or w2. Thus, θCz (w1w2) ≤ θCz (w1) + θCz (w2) + 1.

In both cases we conclude

|θCz (w1w2)− θCz (w1)− θCz (w2)| ≤ 2,

and it follows from Lemma 2.17 that fCz is a quasimorphism of defect D(fCz ) ≤ 30.
Moreover, by Remark 4.3 the maps θCz are invariant under all factor automorphisms ofA∗B.

Consequently, fCz = θCz − θCz̄ is invariant under factor automorphisms as well.

Definition 4.9. A tuple of non-zero natural numbers z = (n1, . . . , nk) is called generic if z̄ does
not occur as a tuple of k adjacent numbers in z2 = (n1, . . . , nk, n1, . . . nk).

Example 4.10. Let z = (n1, . . . , nk). If k ≤ 2, z is not generic. If k ≥ 3 and the ni are
pairwise distinct, then z is generic. E.g. for z = (1, 2, 3) we have z̄ = (3, 2, 1) does not appear
in z2 = (1, 2, 3, 1, 2, 3).

Proposition 4.11. Let A ∗ B be a free product of two freely indecomposable groups A and B,
neither of which is infinite cyclic. Then for any generic tuple of natural numbers z the following
holds:

1. if A � B and C ∈ {A,B} is such that C � Z/2, then the homogenisation f̄Cz of the
quasimorphism fCz is an unbounded Aut-invariant quasimorphism on A ∗B;

2. if A ∼= B � Z/2, then the sum f̄Az + f̄Bz is an unbounded Aut-invariant quasimorphism
on A ∗B.

In both cases the space of homogeneous Aut-invariant quasimorphisms on A ∗B that vanish on
letters has infinite dimension.
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Proof. First, consider the case A � B. By assumption at least one of the factors is not isomor-
phic to Z/2. Without loss of generality we assume A � Z/2. Let z be generic. By Lemma 4.8
the map fAz defines a quasimorphism invariant under all factor automorphisms. According to
Lemma 3.4 this means that fAz is invariant under a full set of representatives for Out(A ∗ B).
Therefore, the homogenisation f̄Az is invariant under all automorphisms of A ∗ B by Lemma
2.19. It remains to check that f̄Az is unbounded, which is equivalent to checking that fAz itself is
unbounded by Lemma 2.6.

Since A � Z/2, it satisfies |A| ≥ 3 and we can choose two distinct non-trivial elements
a1, a2 ∈ A. Furthermore, choose a non-trivial element b ∈ B. Let z = (n1, . . . , nk) and choose
m ∈ N to be non-zero and distinct from all ni ∈ N. We set

w0 = (a1b)
n1(a2b)

n2(a1b)
n3(a2b)

n4 . . . (asb)
nk ,

where s = 1 if k is odd and s = 2 if k is even. Set

w =

{
w0 if k is even,
w0(a2b)

m if k is odd.

The A-code of w is given by

A-code(w) =

{
(n1, . . . , nk) = z if k is even,
(n1, . . . , nk,m) = (z,m) if k is odd.

Since w starts and ends with letters from different groups, the reduced expression of w` is
the `-fold product of the word w for all ` ∈ N. Moreover, because the first letter from A in w is
a1 and the last letter from A is a2, the A-code of w` is

A-code(w`) =

{
(z, z, . . . , z) if k is even,
(z,m, z,m, . . . , z,m) if k is odd.

Sincem is distinct from all ni, m can never appear in any occurrence of z or z̄ in theA-code
of w`. So θAz (w`) = `, whereas θAz̄ (w`) = 0 since z is generic. Consequently,

fAz (w`) = θAz (w`)− θAz̄ (w`) = `,

which shows that fAz is unbounded.
Second, consider the case A ∼= B and fix a choice of isomorphism. Let z be generic.

It holds that |A| = |B| ≥ 3 since A ∗ B is not the infinite dihedral group. Consider the
swap isomorphism s interchanging the factors A and B, where we use the fixed isomorphism
from before to identify A and B with each other. Then the application of s to any element g
interchanges the A-code and B-code of g with each other. This implies that the sum θAz + θBz
is invariant under s and consequently the sum fAz + fBz is invariant under s as well. Again,
by Lemma 4.8 fAz and fBz define quasimorphisms invariant under all factor automorphisms and
so does their sum fAz + fBz . According to Lemma 3.4 this means that fAz + fBz is invariant
under a full set of representatives for Out(A ∗ B). Again, by Lemma 2.19 we see that the
homogenisation f̄Az + f̄Bz is invariant under all automorphisms of A ∗ B. It remains to verify
unboundedness.

For this let a1, a2 ∈ A and b1, b2 ∈ B be non-trivial such that a1 6= a2 and b1 6= b2. Pick a
non-zero number m ∈ N distinct from all ni ∈ N, where z = (n1, . . . , nk). As before, we set

w0 = (a1b1)n1(a2b2)n2(a1b1)n3(a2b2)n4 . . . (asbs)
nk ,
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where s is 1 or 2 depending on whether k is odd or even. We set

w =

{
w0 if k is even,
w0(a2b2)m if k is odd.

Then the A-code and B-code of w agree and are given by

A-code(w) = B-code(w) =

{
(n1, . . . , nk) = z if k is even,
(n1, . . . , nk,m) = (z,m) if k is odd.

Sincem is distinct from all ni, m can never appear in any occurrence of z or z̄ in theA-code
and B-code of w`. As in the first case, θAz (w`) = θBz (w`) = `, whereas θAz̄ (w`) = θBz̄ (w`) = 0
since z is generic. Consequently,

fAz (w`) + fBz (w`) = θAz (w`) + θBz (w`)− θAz̄ (w`)− θBz̄ (w`) = 2`,

which shows that fAz + fBz is unbounded and therefore its homogenisation is the desired un-
bounded Aut-invariant quasimorphism on A ∗B.

Finally, let us verify that the space of homogeneous Aut-invariant quasimorphisms on A∗B
that vanish on letters is infinite-dimensional. Let r ∈ N and let z1, . . . , zr be generic tuples.
Choose zr+1 be a 3-tuple whose entries are distinct non-zero natural numbers and do not appear
in any of the zi; then zr+1 is generic. It follows from the above construction of the word
w for zr+1 in both cases that any linear combination of the associated code quasimorphisms
fAz1 + fBz1 , . . . , f

A
zr + fBzr vanishes on all powers of w. It follows that the same holds for any

linear combination of their homogenisations f̄Az1 + f̄Bz1 , . . . , f̄
A
zr + f̄Bzr . Thus, f̄Azr+1

+ f̄Bzr1 is not
contained in the subspace spanned by the first r quasimorphisms. Clearly, the homogenisation
of any code quasi-morphism vanishes on all letters of A ∗ B. Since r ∈ N was arbitrary, it
follows that the space of homogeneous Aut-invariant quasimorphisms on A ∗ B that vanish on
letters cannot have finite dimension.

Example 4.12. Let G = A ∗B for A = Z/5 and B 6= 1 be freely indecomposable. Consider

g = a4ba2ba2ba3bababa3bababa2ba2ba2b

for non-trivial a ∈ A, b ∈ B. Then the A-tuple of g is (a4, a2, a2, a3, a, a, a3, a, a, a2, a2, a2). It
follows that A-code(g) = (1, 2, 1, 2, 1, 2, 3). Note that A-code(g−1) = (3, 2, 1, 2, 1, 2, 1). For
z = (1, 2, 3) we have θAz (g) = 1 and θAz (g−1) = 0. So fAz (g) = 1. In fact, for all n ∈ N we have
θAz (gn) = n, θAz (g−n) = 0 and so fAz (gn) = n. This implies that the homogenisation f̄Az that is
Aut-invariant for B /∈ {Z/2,Z} by Proposition 4.11 satisfies f̄Az (g) > 0 and is unbounded on
powers of g.

5 Weighted code quasimorphisms
If one of the factors of a free product A ∗ B of freely indecomposable groups happens to be
infinite cyclic, the code quasimorphisms above are in general not Aut-invariant since they are
not necessarily invariant with respect to transvections. Thus, we need to modify our original
construction to deal with infinite cyclic factors. Afterwards we will follow steps similar to the
previous section in order to establish their Aut-invariance.
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Lemma 5.1. Let B be a non-trivial group and let w be any word in Z ∗ B such that w only
contains letters of the same sign from Z and starts and ends with a non-zero letter from Z. Then
its unique reduced form w′ starts and ends with a letter from Z with that given sign. Moreover,
the sum over all letters in w belonging to the factor Z remains the same in its reduced form w′.

Proof. Any word in the free product is brought to its reduced form by successively eliminating
trivial letters and replacing two adjacent letters from the same factor by their product in that
factor. The sum of all letters from Z stays the same because any two adjacent letters of Z are
always replaced by their sum throughout the reduction process. The only way to encounter an
elimination of the first letter a1 ∈ Z or the last letter an ∈ Z during the reduction process would
be by the occurrence of −a1 or −an. This is not possible since a1 and an are non-zero and all
letters have the same sign by assumption.

Definition 5.2 (Weighted Z-code). LetB be freely indecomposable. Write g ∈ Z∗B in reduced
form. Let (a1, . . . , ak) be the Z-tuple of g. We define a tuple (x1, . . . , x`) of non-zero natural
numbers as follows. Consider the successive subsequences of maximal length in (a1, . . . , ak)
consisting of integers all of the same sign. For the i-th such sequence, we define xi to be
the absolute value of the sum of integers in that sequence. We call the tuple (x1, . . . , x`) the
weighted Z-code of g.

Example 5.3. Let B be a non-trivial group and let bi ∈ B be non-trivial elements. Then the
reduced word

w = 7b1(−2)b2(−4)b3(−1)b49b52b6(−3)

has the Z-tuple (7,−2.− 4,−1, 9, 2,−3) which yields the weighted Z-code (7, 7, 11, 3).

Definition 5.4 (Weighted code quasimorphisms). Let z = (n1, . . . , nk) be a tuple of non-zero
natural numbers. We set θZz : Z ∗ B → Z≥0 to count the number of disjoint occurrences of z as
a tuple of consecutive numbers inside the weighted Z-code of g ∈ Z ∗ B. Define the weighted
code quasimorphism

fZz : Z ∗B → Z by fZz (g) = θZz (g)− θZz (g−1)

for all g ∈ Z ∗B. Note that we again have θZz (g−1) = θZz̄ (g) for all g.

Lemma 5.5. Let z be a non-empty tuple of non-zero natural numbers. Then the counting func-
tion θZz : Z ∗B → Z≥0 satisfies

1. θZz (g−1) = θZz̄ (g) for all g ∈ Z ∗B,

2. |θZz (w1w2)−θZz (w1)−θZz (w2)| ≤ 2 for all reduced words w1, w2 in Z∗B for which w1w2

is a reduced word.

Moreover, fZz : Z ∗ B → Z defined for all g ∈ Z ∗ B by fZz (g) = θZz (g) − θZz (g−1) is a
quasimorphism of defect D(fZz ) ≤ 30.

Proof. First, recall that the reduced form of g−1 is obtained by inverting the reduced form of g,
which amounts to reversing the order and inverting all letters. This means to obtain the weighted
Z-code of g−1 one needs to reverse the one of g. Consequently, counting the number of disjoint
occurrences of z in the weighted Z-code of g−1 amounts to counting the disjoint occurrences of
the reversed tuple z̄ in the weighted Z-code of g itself. This proves the first part.
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Second, let w1, w2 be written as reduced words with Z-tuples given by (n1, . . . , nk) for w1

and (m1, . . . ,m`) for w2 for integers ni,mj . Let (x1, . . . , xk′) and (y1, . . . , y`′) be the weighted
Z-codes of w1 and w2. By assumption there is no cancellation or reduction in the product of
their reduced expressions representing w1w2. That means that the last letter of w1 and the first
letter of w2 belong to different factors. Then

weighted Z-code(w1w2) =

{
(x1, . . . , xk′ , y1, . . . , y`′) if sgn(nk) 6= sgn(m1),

(x1, . . . , xk′−1, xk′ + y1, y2, . . . , y`′) if sgn(nk) = sgn(m1).

If sgn(nk) 6= sgn(m1), then θZz (w1w2) ∈ {θZz (w1) + θZz (w2), θZz (w1) + θZz (w2) + 1} since at
most one of the disjoint occurrences of z can involve numbers that do not lie completely in the
weighted Z-code of either w1 or w2.

If sgn(nk) = sgn(m1), then θZz (w1w2) ≥ θZz (w1) + θZz (w2) − 2 since only one occurrence
of z in the weighted Z-code of w1 and w2 can involve xk′ or y1 respectively. Moreover, if an
occurrence of z in the weighted Z-code of w1w2 involves xk′ + y1, then all other occurrences
of z are either fully contained in the weighted Z-code of w1 or fully contained in the weighted
Z-code of w2. Thus, θZz (w1w2) ≤ θZz (w1) + θZz (w2) + 1.

In both cases we conclude that

|θZz (w1w2)− θZz (w1)− θCz (w2)| ≤ 2.

It follows from Lemma 2.17 that fZz is a quasimorphism of defect at most 30.

Lemma 5.6. For all non-empty tuples z the weighted code quasimorphism fZz : Z ∗ B → Z is
invariant under factor automorphisms and transvections of the first factor.

Proof. It is immediate from the definition that the weighted Z-code of any element in the free
product is invariant under factor automorphisms. Let x be a generator of the infinite cyclic factor
in Z ∗ B. Any transvection is defined to be the identity on letters from B and maps x → xy
or x → yx for some non-trivial element y ∈ B. Let us consider the transvection ϕ uniquely
specified by x → xy and show that the weighted Z-code of any element in Z ∗ B is invariant
under ϕ. Then it immediately follows that θZz and fZz are invariant under ϕ. The argument for
transvections of the second kind will follow analogously to the one we present now.

Let w ∈ Z ∗B be a reduced word such that its weighted Z-code has length one. This means
that all letters from Z in the reduced expression of w have the same sign and the weighted
Z-code is given by the image of w under the factor projection Z ∗B → Z. Note that this factor
projection is invariant with respect to ϕ and so the weighted Z-code of ϕ(w) agrees with the
one of w. There cannot be any cancellations of letters from Z occurring.

Let us do a preliminary calculation to visualise the general case more easily. Let k, ` be
non-zero natural numbers and b ∈ B non-trivial. Then

ϕ(xkbx−`) = ϕ(x)kbϕ(x)−` = (xy)kb(y−1x−1)` = xy . . . xyxyby−1x−1y−1x−1 . . . y−1x−1,

ϕ(x−kbx`) = ϕ(x)−kbϕ(x)` = (y−1x−1)kb(xy)` = y−1x−1 . . . y−1x−1bxy . . . xy.

This shows that the letter fromB separating the positive and negative powers of x either remains
b or is a conjugate of b in B after applying ϕ.

Let w ∈ Z ∗B be a reduced word with weighted Z-code of length k ≥ 2. In w we formally
gather all consecutive occurrences of powers of x of the same sign and call these sub-words
wi for i = {1, . . . , k}. That is, we write the reduced word w uniquely as a product of reduced
words as

w = w1b1w2b2 . . . wk−1bk−1wk,
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where the bi ∈ B are non-trivial and the wi are of of maximal length such that all letters from Z
inside any wi have the same sign. Moreover, in this decomposition w1 ends with a letter from
Z, wn starts with a letter from Z and all other wi start and end with letters from Z. By the
maximality of wi all letters from Z occurring in wi have different signs from the ones occurring
in wi+1 for all i.

We apply ϕ to w and obtain an a priori not necessarily reduced word, which we rewrite in
the previous block form as

ϕ(w) = ϕ(w1)b1ϕ(w2)b2 . . . ϕ(wk−1)bk−1ϕ(wk) = w′1b
′
1w
′
2b
′
2 . . . w

′
k−1b

′
k−1w

′
k,

where b′i = yby−1 if the letters from Z change sign from positive to negative at bi and b′i = bi if
they change from negative to positive. Moreover, all letters from Z inside any w′i have the same
sign again, w′1 ends with a letter from Z, w′n starts with a letter from Z and all other w′i start and
end with letters from Z.

We observe that when bringing ϕ(w) to its reduced form there cannot be any cancellations
of the letters b′i. This is because by Lemma 5.1 the letters that are adjacent to bi will always
remain letters from Z after the reduction procedure of all w′i. Indeed, replacing all w′i by their
reduced forms w′′i we see that the product

w′′ = w′′1b
′
1w
′′
2b2 . . . w

′′
k−1b

′
k−1w

′′
k

is the reduced representative of ϕ(w) since the letters adjacent to the b′i are always letters from
Z. Consequently, no cancellations in between letters of different signs from Z can occur when
bringing ϕ(w) to its reduced form. The reduced words w′′i have the same weighted Z-code
as the original wi for all i. Therefore, the weighted Z-code of ϕ(w) agrees with the weighted
Z-code of w.

Proposition 5.7. Let B be a freely indecomposable group which is not infinite cyclic. Then
for any generic tuple of natural numbers z the homogenisation f̄Zz : Z ∗ B → R of the quasi-
morphism fZz is an unbounded Aut-invariant quasimorphism on Z ∗ B. Moreover, the space of
homogeneous Aut-invariant quasimorphisms on Z ∗B that vanish on letters has infinite dimen-
sion.

Proof. By Lemma 5.5 fZz is a quasimorphism that is invariant under factor automorphisms
and transvections according to Lemma 5.6. Images of these automorphisms generate the outer
automorphism group Out(Z ∗ B) by Lemma 3.4 . Thus, fZz is invariant under a full set of
representatives of all outer automorphisms and so by Lemma 2.19 the homogenisation f̄Zz is
invariant under Aut(Z ∗B). It remains to check that it is unbounded, which is equivalent to fZz
itself being unbounded.

Since z is generic, z = (n1, . . . , nk) for some k ≥ 3 where all ni ∈ N are non-zero. Let
b ∈ B be non-trivial and m a strictly positive integer number distinct from all ni. Set w ∈ Z∗B
to be

w =

{
n1b(−n2)bn3b(−n4) . . . b(−nk)b if k is even,
n1b(−n2)bn3b(−n4) . . . b(−nk)bmb if k is odd.

The weighted Z-code of w is given by

weighted Z-code(w) =

{
(n1, . . . , nk) = z if k is even,
(n1, . . . , nk,m) = (z,m) if k is odd.
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Since w starts and ends with letters belonging to different factors, the reduced expression
of w` is the `-fold product of the word w for all ` ∈ N. Moreover, since the first and last letter
from Z in w have different signs the weighted Z-code of w` is

weighted Z-code(w`) =

{
(z, z, . . . , z) if k is even,
(z,m, z,m, . . . , z,m) if k is odd.

Since m is distinct from all ni, m cannot appear in any occurrence of z or z̄ inside the weighted
Z-code of w`. So θZz (w`) = `, whereas θAz̄ (w`) = 0 since z is generic. Consequently,

fZz (w`) = θZz (w`)− θZz̄ (w`) = `,

which shows that fZz is unbounded.
Finally, let us verify that the space of homogeneous Aut-invariant quasimorphisms on Z∗B

that vanish on letters is infinite-dimensional. Clearly, the homogenisation of any weighted code
quasimorphism vanishes on all letters of Z ∗ B. Let r ∈ N and let z1, . . . , zr be generic tuples.
Choose zr+1 be a 3-tuple whose entries are distinct non-zero natural numbers and do not appear
in any of the zi; then zr+1 is generic. It follows from the above construction of the word w for
zr+1 that any linear combination of fZz1 , . . . , f

Z
zr vanishes on all powers of this w. It follows that

the same holds for any linear combination of their homogenisations f̄Zz1 , . . . , f̄
Z
zr . Thus, f̄Zzr+1

is not contained in the subspace spanned by the first r quasimorphisms. Since, r ∈ N was
arbitrary, it follows that the space of homogeneous Aut-invariant quasimorphisms on Z ∗B that
vanish on letters cannot have finite dimension.

Remark 5.8. Proposition 5.7 does not hold for B = Z. Indeed, f̄Zz does no longer need to
be invariant under Aut(Z ∗ B) since the weighted Z-code is in general not invariant under
transvections of the factor B.

For example, consider z = (4, 3, 2, 1) and denote the standard generators of Z ∗B by x ∈ Z
and y ∈ B. Following the proof of Proposition 5.7 the element w = x4yx−3yx2yx−1y with
weighted Z-code of (4, 3, 2, 1) satisfies fZz (w`) = ` for all ` ∈ N. Let ϕ ∈ Aut(Z ∗ B) be
the transvection of the second factor defined by ϕ(x) = x and ϕ(y) = x3y. Then we have
ϕ(w) = x7y2x5yx2y. So the weighted Z-code of ϕ(w) is the tuple with a single entry equal to
14. Thus, fZz (ϕ(w`)) = fZz (ϕ(w)`) = 0 for all ` ∈ N. So f̄Zz evaluates non-trivially on w, but
trivially on ϕ(w), which means that f̄Zz is not invariant under Aut(Z ∗B).

Moreover, this example can be used to show that the sum of the two weighted code quasi-
morphisms f̄Zz + f̄Bz is not necessarily invariant under Aut(Z ∗ B) either, which contrasts the
situation of free factors that are not infinite cyclic in Proposition 4.11 (2).

5.1 Naturality of (weighted) code quasimorphisms with respect to inclu-
sions

Let us now show that (weighted) code quasimorphisms satisfy a naturality condition with re-
spect to inclusions. Using this property will only become necessary once, in the last part of the
proof of Theorem 9.27.

Lemma 5.9. Let A,B,C,D be freely indecomposable groups such that C ≤ A, D ≤ B are
subgroups. Let G = A ∗ B and let H = C ∗ D inside G. Let z be any tuple of positive
integers and consider the counting functions θAz : G→ Z and θCz : H → Z. Then the restriction
to the subgroup H ≤ G satisfies (θAz )|H = θCz . Consequently, we have (fAz )|H = fCz for the
corresponding code quasimorphisms which implies (f̄Az )|H = f̄Cz for their homogenisations.
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Proof. Any word in H is reduced if and only if its image in G is reduced. Therefore, for any
h ∈ H with C-tuple given by (c1, . . . , ck) where ci ∈ C for all i we have that the A-tuple of h
is given by (c1, . . . , ck) as well. Consequently, we have A-code(h) = C-code(h) for all h ∈ H .
So (θAz )|H = θCz for all tuples z of positive integers and the rest of the statement follows as
well.

6 Applications of code quasimorphisms
Theorem 6.1. Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups A and B. Assume G is not the infinite dihedral group. Then G admits infinitely many
linearly independent homogeneous Aut-invariant quasimorphisms, all of which vanish on single
letters.

Proof. The space of homogeneous Aut-invariant quasimorphisms on Z ∗ Z has infinite dimen-
sion by [BrMa19, Theorem 2]. Inverting both generators of the factors defines an automorphism
which inverts all letters in Z ∗ Z. So any homogeneous Aut-invariant quasimorphism on Z ∗ Z
vanishes on all letters. For all other free products of two factors Proposition 4.11 and Proposi-
tion 5.7 imply the existence of infinitely many linearly independent homogeneous Aut-invariant
quasimorphisms, all of which vanish on letters.

Corollary 6.2. Let G = A ∗ B be the free product of two non-trivial freely indecomposable
groups and assume G is not the infinite dihedral group. Then there exists a stably unbounded
Aut-invariant norm on G.

Proof. LetA∗B be a free product of two freely indecomposable groups which is not the infinite
dihedral group. By Theorem 6.1 there exist unbounded Aut-invariant quasimorphisms on A∗B
that are bounded on all letters. Since A ∗ B is generated by letters, the result follows from
Lemma 2.9.

Remark 6.3. If neither A nor B is infinite cyclic, then Corollary 6.2 can also be deduced from
the result given in [Mar20, Lemma 4.4] together with the explicit description of the automor-
phism group given in Section 3.

Corollary 6.4. LetH → G→ A∗B be an extension of a free product of freely indecomposable
groups A and B by a group H . Assume that H is a characteristic subgroup of G and A ∗ B is
not the infinite dihedral group. Then the space of homogeneous Aut-invariant quasimorphisms
on G is infinite-dimensional.

Proof. The space of homogeneous Aut-invariant quasimorphisms on A ∗B has infinite dimen-
sion by Theorem 6.1. Therefore, the result follows from Lemma 2.23.

Corollary 6.5. Let G1 ∗H G2 be a free product of groups G1, G2 amalgamated over a common
subgroup H which is proper and central in both G1 and G2. If G1/H and G2/H are freely
indecomposable and not both equal to Z/2, the space of homogeneous Aut-invariant quasimor-
phisms on G1 ∗H G2 is infinite-dimensional.

Proof. By assumption H 6= G1 and H 6= G2 and so H equals the center of G1 ∗H G2. As such
it is a characteristic subgroup of G1 ∗H G2. Furthermore, G1∗HG2

H
∼= G1

H
∗ G2

H
. By assumption

G1

H
∗ G2

H
is not isomorphic to the infinite dihedral group and the result follows from Corollary

6.4 above.
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Example 6.6. For q ≥ 3, the Hecke groups Hq
∼= Z/2 ∗ Z/q admit infinitely many linearly

independent homogeneous Aut-invariant quasimorphisms by Theorem 6.1.

Example 6.7. By Corollary 6.5 the space of homogeneous Aut-invariant quasimorphisms on
SL(2,Z) is infinite-dimensional, since SL(2,Z) is the amalgamated product Z/4 ∗Z/2 Z/6.

Example 6.8. The braid group B3 admits infinitely many linearly independent homogeneous
Aut-invariant quasimorphism as well by Corollary 6.4. Indeed, B3 is the central extension of
PSL(2,Z) = Z/2 ∗ Z/3 by Z. For more details see Appendix B.

Example 6.9. Let Gp,q = Z ∗Z Z be the free product of two copies of the integers amalgamated
over inclusions ι1, ι2 : Z→ Zwhich are multiplication by p and q. For coprime choices of p and
q these are the so-called knot groupsKp,q arising as the fundamental group of the complement of
torus knots. Then Gp,q admits infinitely many linearly independent homogeneous Aut-invariant
quasimorphisms if min{|p|, |q|} ≥ 2 and max{|p|, |q|} ≥ 3. We have seen in Example 2.14
that this is no longer true for p = q = 2.

7 General case of free products
Recall, that for a free product G the group Aut0(G) is the subgroup of its automorphism group
generated by factor automorphisms, transvections and partial conjugations.

Lemma 7.1. Let k ≥ 3 and letG = G1∗G2∗· · ·∗Gk be a free product of freely indecomposable
factors such that Gi is not infinite cyclic for i ≥ 3. Then the kernel ker(p) of the projection
p : G→ G1 ∗G2 is invariant under Aut0(G).

Proof. The kernel ker p is normally generated by letters belonging to G3, . . . , Gk. Thus, ker(p)
is clearly invariant under all factor automorphisms. Since Gi is not infinite cyclic for i ≥ 3,
all transvections act trivially on letters of Gi. Moreover, since ker(p) is a normal subgroup,
it is invariant under all partial conjugations. These three classes of automorphisms generate
Aut0(G) and so ker(p) is invariant under Aut0(G).

Lemma 7.2. Let k ≥ 3 and letG = G1∗G2∗· · ·∗Gk be a free product of freely indecomposable
factors such thatGi is not infinite cyclic for i ≥ 3. Let p : G→ G1∗G2 be the projection and let
ψ : G1 ∗G2 → R be an Aut-invariant quasimorphism. Then ψ ◦p : G→ R is an Aut0-invariant
quasimorphism on G.

Proof. Clearly, ψ◦p is a quasimorphism. Its Aut0-invariance follows from Lemma 7.1 together
with the Aut-invariance of ψ.

Theorem 7.3. Let G = G1 ∗ · · · ∗ Gk be a free product of freely indecomposable groups Gi

where k ≥ 2. Assume that at most two factors are infinite cyclic and there exists j ∈ {1, . . . , k}
such that Gj � Z/2. Then G admits infinitely many linearly independent homogeneous Aut-
invariant quasimorphisms, all of which vanish on single letters.

Proof. After reordering the free factors we may assume that Gi is not infinite cyclic for i ≥ 3
and that G1 � Z/2. Let ψ be an Aut-invariant quasimorphism on G1 ∗G2 that is homogeneous,
unbounded and vanishes on single letters. The existence of such a quasimorphism follows from
Theorem 6.1 . By Lemma 7.2 the composition ψ ◦ p, where p : G → G1 ∗ G2 denotes the
projection map, is Aut0-invariant on G. By Lemma 3.3 the index of Aut0(G) in Aut(G) is
finite with a system of coset representatives given by automorphisms permuting the factors. We
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denote this system by {σi}i∈I . Therefore, by Lemma 2.21 the quasimorphism ψ̂ ◦ p defined for
g ∈ G by ψ̂ ◦ p(g) =

∑
i ψ(p(σi(g))) is invariant under the whole automorphism group of G.

It is homogeneous as well. Let us verify that it is unbounded.
Let g ∈ G1 ∗ G2. For any i ∈ I and j ∈ {1, . . . , k} we have on the level of letters that

σi(Gj) = Gσi(j). So, if {σi(1), σi(2)} 6= {1, 2} then p(σi(g)) is either trivial or just a single
letter of G1 or G2. However, we know that ψ vanishes on single letters and so ψ(p(σi(g)))
vanishes for all σi that fail to satisfy {σi(1), σi(2)} = {1, 2}. So let J ≤ I be the subset
consisting of σj satisfying {σj(1), σj(2)} = {1, 2}. Any σj ∈ J descends to an automorphism
σ̄j ofG1∗G2 under p. However, we know that ψ is invariant under all automorphisms ofG1∗G2,
so in particular under the ones of the form σ̄j . Consequently, we calculate for g ∈ G1 ∗G2 that

ψ̂ ◦ p(g) =
∑
i∈I

ψ(p(σi(g))) =
∑
j∈J

ψ(p(σj(g))) =
∑
j∈J

ψ(σ̄j(g))) = |J |ψ(g),

where |J | denotes the cardinality of the set J . Note that |J | ≥ 1 since it contains the represen-
tative of the class representing the identity.

This means that for any Aut-invariant quasimorphism ψ on G1 ∗G2 that vanishes on letters
the Aut-invariant quasimorphism ψ̂ ◦ p on G restricts to a linear multiple of ψ on the subgroup
G1 ∗ G2 ≤ G. Additionally, ψ̂ ◦ p vanishes on all letters as well. Consequently, the space
of homogeneous Aut-invariant quasimorphisms on G is infinite dimensional since the space of
homogeneous Aut-invariant quasimorphisms onG1∗G2 is infinite dimensional by Theorem 6.1.
Moreover, all of these homogeneous quasimorphisms can be chosen to vanish on letters.

Example 7.4. B3∗ZB3, the free product ofB3 with itself amalgamated over their common cen-
ter generated by the Garside element, admits infinitely many linearly independent unbounded
Aut-invariant quasimorphisms. To prove this we cannot apply Corollary 6.5 directly sinceB3/Z
is not freely indecomposable. The center of B3 ∗ZB3 is again generated by the Garside element
of each of the factors. This fits into the short exact sequence

Z→ B3 ∗Z B3 → (B3/Z) ∗ (B3/Z).

Finally, (B3/Z) ∗ (B3/Z) = PSL(2,Z) ∗ PSL(2,Z) = Z/2 ∗ Z/3 ∗ Z/2 ∗ Z/3. So Theorem
7.3 applies. Then the statement for B3 ∗Z B3 follows from Lemma 2.23.

8 Graph products of abelian groups

8.1 Definitions
Definition 8.1 (Graph). A finite graph Γ is a pair (V,E) consisting of a non-empty finite set
of vertices V and a finite set of unoriented edges E where an unoriented edge is a subset of V
of cardinality two. So two distinct vertices have at most one edge between them and no vertex
has an edge to itself. A graph Γ is called complete if there exists an edge between all pairs of
distinct vertices in Γ. For a subset X ⊂ V we denote by ΓX the subgraph of Γ spanned by X .

Definition 8.2. Let Γ = (V,E) be a graph.

1. The link of v ∈ V is defined to be lk(v) = {x ∈ V : (v, x) ∈ E}.

2. The star of v ∈ V is defined to be st(v) = lk(v) ∪ {v}.
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Definition 8.3. A relation ∼ on a set X is called reflexive if x ∼ x for all x ∈ X . Further, ∼ is
called transitive if x ∼ y, y ∼ z implies that x ∼ z for all x, y, z ∈ X .

Definition 8.4 ([CoGu09, Def. 5.4]). A preorder is a relation that is reflexive and transitive. We
define two preorders on any graph Γ = (V,E) by:

v ≤ w if and only if lk(v) ⊂ st(w),

v ≤s w if and only if st(v) ⊂ st(w).

The preorder ≤ has already been defined before in [ChVo09] with the proof of transitivity
given in [ChVo09, Lemma 2.1].

Definition 8.5 (Graph product). Let Γ = (V,E) be a finite graph. Let {Gv}v∈V be a set of
non-trivial groups. The graph product defined by Γ and {Gv}v∈V is the group

W (Γ, {Gv}v∈V ) = (∗v∈VGv)/N,

where N is the normal subgroup generated by all [Gx, Gy] for x, y ∈ V such that {x, y} ∈ E.

Definition 8.6. Let W (Γ, {Gv}v∈V ) be a graph product of groups. If all vertex groups are Z/2,
then W (Γ, {Gv}v∈V ) is the right angled Coxeter group on the graph Γ. If all vertex groups are
infinite cyclic, then W (Γ, {Gv}v∈V ) is the right angled Artin group on Γ which will be denoted
by RΓ from now onwards.

Definition 8.7 (Truncated subgroup). Let Γ = (V,E) be a graph and {Gv}v∈V be a collec-
tion of finitely generated abelian groups. Let V ′ ⊂ V be a non-empty subset of vertices and
let Γ′ be the subgraph of Γ spanned by V ′. Then W (Γ′, {Gv}v∈V ′) is called a truncated sub-
group of W (Γ, {Gv}v∈V ). If W (Γ, {Gv}v∈V ) decomposes as the cartesian product of the trun-
cated subgroup W (Γ′, {Gv}v∈V ′) spanned by V ′ ⊂ V and the one spanned by V − V ′, then
W (Γ′, {Gv}v∈V ′) is called a direct truncated subgroup of W (Γ, {Gv}v∈V ).

A group that is isomorphic to Z/pk where k is a positive integer and p is a prime is called
primary. Recall that finitely generated abelian groups can be uniquely decomposed into a carte-
sian product with primary and infinite cyclic factors. Thus, one sees that for any graph product
of finitely generated abelian groups W (Γ, {Gv}v∈V ) there is a graph Γ′ = (V ′, E ′) together
with a collection of groups {G′v}v∈V ′ , where each G′v is primary or infinite cyclic, such that
W (Γ, {Gv}v∈V ) ∼= W (Γ′, {G′v}v∈V ′). Namely, Γ′ = (V ′, E ′) is obtained by replacing each
v ∈ V by the complete graph with vertices corresponding to the generators of the primary and
infinite cyclic factors of Gv. We say that Γ′ is the graph expanding Γ in this case. Clearly, for a
graph product of finite abelian groupsW (Γ, {Gv}v∈V ) there is a collection {G′v}v∈V ′ consisting
only of primary groups such that W (Γ, {Gv}v∈V ) ∼= W (Γ, {G′v}v∈V ′).

We simplify notation by denotingW (Γ, {Gv}v∈V ) asWΓ for the case where the set {Gv}v∈V
only consists of primary or infinite cyclic groups. In WΓ we will abuse notation to identify
each vertex of Γ with a chosen generator of the cyclic group Gv. Therefore, vertices can be
considered as elements in WΓ.

The next lemma shows that the above replacement of W (Γ, {Gv}v∈V ) by W (Γ, {G′v}v∈V ′)
does not create new direct truncated subgroups that are free products of primary or infinite
cyclic groups.

Lemma 8.8. Let Γ = (V,E) be a graph and let W (Γ, {Gv}v∈V ) be a graph product of finitely
generated abelian groups. Let Γ′ = (V ′, E ′) and {G′v}v∈V ′ where eachG′v is primary or infinite
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cyclic be the graph expanding W (Γ, {Gv}v∈V ) such that W (Γ′, {G′v}v∈V ′ ∼= W (Γ, {Gv}v∈V ).
Assume that for some k ≥ 2 there is a direct truncated subgroup in W (Γ′, {G′v}v∈V ′) of the
form H = Gv1 ∗ · · · ∗Gvk , then H is a direct truncated subgroup of W (Γ, {Gv}v∈V ) generated
by the same vertex set.

Proof. For v1 ∈ V ′ there is a corresponding vertex w1 ∈ V such that v1 originates from w1

when replacing the finitely generated abelian vertex groupGw1 by its primary and infinite cyclic
factors. Assume there was another generator w inside the vertex group Gw1 yielding another
vertex w in the graph Γ′. Then since v1 and w originate from the same vertex group they
commute in W (Γ′, {G′v}v∈V ′ as well and so w /∈ {v1, . . . , vk}. Then w belongs to the truncated
subgroup spanned by V ′−{v1, . . . , vk}. Since H is a direct truncated subgroup, this means that
w commutes with all vi. However, since v1 and w originate from the same vertex group, they
also satisfy st(w) = st(v1). This is a contradiction since v2 ∈ st(w) but v2 /∈ st(v1). Therefore,
the vertex group Gw1 is the same as Gv1 to begin with. Similarly, this holds for all vi for i ≥ 2
and {w1, . . . , wk} span H as a direct truncated subgroup in W (Γ, {Gv}v∈V ).

The question of when a graph product decomposes as a direct product of truncated sub-
groups has been solved in [Gre90] for graph products with general vertex groups. We only give
a version restricted to our case of finitely generated abelian vertex groups here, where we as-
sume that the vertex set of the graph in consideration has cardinality at least two since truncated
subgroups have non-trivial underlying vertex set by definition.

Theorem 8.9 ([Gre90, Thm. 3.34]). Let Γ = (V,E) be a graph with |V | ≥ 2 and let {Gv}v∈V
be a collection of finitely generated abelian groups. ThenW (Γ, {Gv}v∈V ) has non-trivial center
if and only if W (Γ, {Gv}v∈V ) is a direct product of truncated subgroups at least one of which
has non-trivial center.

Inductively applying this result immediately yields the following description of graph prod-
ucts of finitely generated abelian groups.

Corollary 8.10. Let Γ be a graph and {Gv}v∈V be a collection of finitely generated abelian
groups. Then W (Γ, {Gv}v∈V ) has non-trivial center if and only if there exists a vertex v ∈ V
such that st(v) = V .

Proof. Clearly, any v ∈ V such that st(v) = V belongs to the center of W (Γ, {Gv}v∈V ).
Conversely, if the center of W (Γ, {Gv}v∈V ) is non-trivial, then it decomposes into a direct
product of truncated subgroups at least one of which has a non-trivial center. Since truncated
subgroups are graph products themselves , we can iterated this procedure until we end up with
a subgroup over a single vertex v ∈ V that is a direct factor of W (Γ, {Gv}v∈V ). This implies
st(v) = V .

8.2 Automorphisms of graph products
Recall that for a graph product WΓ where all vertex groups are primary or infinite cyclic we
perceive the vertices of Γ as elements in WΓ by identifying them with a generator of their
respective vertex group. There are the following four families of automorphisms for graph
products WΓ for which each vertex group is primary or infinite cyclic (see [CoGu09, p.1–2]
combined with [CoGu09, Prop. 5.5]).

1. Every isomorphism of graphs γ : Γ → Γ such that Gv = Gγ(v) for all v ∈ V induces an
automorphism of WΓ. Such automorphisms are called labelled graph automorphisms.
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2. Let v ∈ V and m ∈ Z such that gcd(m, |Gv|) = 1. If |Gv| = ∞, then m = ±1. Then
we set the factor automorphism φv,m to be the unique automorphism of WΓ defined for
z ∈ V by

φv,m(z) =

{
vm z = v,

z z 6= v.

3. Let v, w ∈ V be two distinct vertices. A dominated transvection is an automorphism τv,w
defined having one of the two forms:

(a) |Gv| =∞, v ≤ w and

τv,w(z) =

{
vw z = v,

z z 6= v,

(b) |Gv| = pk, |Gw| = p`, v ≤s w and

τv,w(z) =

{
vwq z = v,

z z 6= v,

where q = max{1, p`−k} and p is prime.

4. Let v ∈ V and let K be the vertex set of a connected component of Γ− st(v). Define the
partial conjugation by v on K by

σK,v(z) =

{
vzv−1 z ∈ K,
z z /∈ K.

Theorem 8.11 ([CoGu09, p.2]). Let G = WΓ be a graph product where each vertex group is
primary or infinite cyclic. Then Aut(G) is generated by the above four families of automor-
phisms.

Definition 8.12. Let G = WΓ. Then the subgroup of Aut(G) generated by automorphisms of
type 2–4 above is denoted by Aut0(G).

Note that this definition agrees with Definition 3.2 for free products where all factors are
primary or infinite cyclic.

Lemma 8.13. [Mar20, Prop 2.1] Aut0(WΓ) is a finite index subgroup of Aut(WΓ). A set of
coset representatives is given by labelled graph automorphisms.

9 Aut-invariant quasimorphisms on graph products
From now onwards we will only consider graph products of finitely generated abelian groups.
Recall, that by Lemma 2.9 the existence of any unbounded Aut-invariant quasimorphism on
a finitely generated group implies the existence of an unbounded Aut-invariant norm on that
group. Thus, as corollaries of our constructions we will reprove the existence of unbounded
Aut-invariant norms shown in [Mar20].
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9.1 Lower cones
Definition 9.1. Let Γ = (V,E) be a graph and let X ⊂ V be a subset of vertices. The map
RX : WΓ → WΓX

defined by

RX(z) =

{
z z ∈ X,
e z /∈ X.

is called a standard retraction onto the full subgraph of Γ generated byX . We denote the kernel
of RX by KX .

Lemma 9.2 ([Mar20, Lemma 3.3]). Let X ⊂ V . The group KX is invariant under factor
automorphisms and partial conjugations.

Definition 9.3. Let Γ = (V,E) be a graph and let W (Γ, {Gv}v∈V ) be a graph product of a
family of groups {Gv}v∈V each of which is primary or infinite cyclic. Let ≤τ be the relation on
V defined for v, w ∈ V by v ≤τ w if and only if the dominated transvection τv,w is well-defined.

Definition 9.3 above is the central definition of this subsection. For the remainder of this
subsection we always implicitly assume that Γ = (V,E) is a graph and WΓ = W (Γ, {Gv}v∈V )
is a graph product of a family of groups {Gv}v∈V each of which is primary or infinite cyclic.
Recall that a partial order on a set X is a preorder - for which x = y whenever x - y and
y - x for all x, y ∈ X .

Lemma 9.4 ([Mar20, Lemma 3.4]). The relation ≤τ is a preorder on V .

Definition 9.5. Define a relation ∼τ on V by setting v ∼τ w if and only if v ≤τ w and w ≤τ v
for v, w ∈ V . Since ≤τ is a preorder, ≤τ defines a partial order on the equivalence classes of
∼τ in V .

Lemma 9.6 ([Mar20, p.9]). Let Γ = (V,E) be a graph M ⊂ V be an equivalence class of ∼τ .
Then WΓM

is either finite and abelian, or free abelian, or a free group.

Definition 9.7 (Lower Cone). Let Y be a set and ≤ a relation on Y . A subset X ⊂ Y is called
a lower cone if for all t ∈ X , s ∈ Y the relation s ≤ t implies that s ∈ X .

Lemma 9.8. Unions and intersections of lower cones are lower cones.

Proof. Let Xi ⊂ Y be lower cones with respect to ≤ for i ∈ I . Let t ∈
⋃
i∈I Xi and s ∈ Y

be given such that s ≤ t. Then there exists j ∈ I such that t ∈ Xj . Since Xj is a lower cone,
s ∈ Xj and consequently s ∈

⋃
i∈I Xi. Therefore,

⋃
i∈I Xi is a lower cone.

Let t ∈
⋂
i∈I Xi and s ∈ Y be such that s ≤ t. Then t ∈ Xi for all i ∈ I . Since every Xi is

a lower cone, we have that s ∈ Xi for all i ∈ I and therefore s ∈
⋂
i∈I Xi. Therefore,

⋂
i∈I Xi

is a lower cone.

Example 9.9. The complement of any minimally chosen subset of vertices V ′ ⊂ V whose
removal disconnects the graph Γ = (V,E) is a lower cone with respect to ≤τ . In fact, let
C1, . . . , Ck be the vertex sets of the connected components of ΓV−V ′ . Then for all i each vertex
v ∈ Ci satisfies st(v) ⊂ Ci ∪ V ′. But since V ′ is chosen minimally with respect to the property
that its removal disconnects Γ, the link of each vertex w ∈ V ′ contains vertices from at least
two distinct connected components Ci and Cj . Thus, no vertex v ∈ V ′ satisfies v ≤τ w for any
w ∈ V − V ′ = C1 ∪ · · · ∪ Ck.
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Lemma 9.10. Let v ∈ V such that st(v) = V and assume that Gv is finite for all v. Then the
equivalence class [v] of ∼τ is maximal with respect to ≤τ .

Proof. Let w ∈ V be such that v ≤τ w. Then V = st(v) = st(w). Since τv,w is well-defined,
|Gv| = pk and |Gw| = p` for a prime p. So τw,v is well defined as well. Thus w ≤τ v and
therefore w ∼τ v.

Lemma 9.11. Let RΓ be a right angled Artin group. Let v ∈ V such that st(v) = V . Then the
equivalence class [v] of ∼τ is maximal with respect to ≤τ .

Proof. Let w ∼τ v for some w 6= v. Since st(v) = V , we have that w ∈ lk(v) and so
v ∈ lk(w). Moreover, since v ≤τ w, we have V − {v} = lk(v) ⊂ st(w). Thus, st(w) = V for
all w ∼τ v. Trivially, lk(z) ⊂ V = st(v) for all z ∈ V and so any z ∈ V satisfies z ≤τ v.

Lemma 9.12. Let Γ = (V,E) be a graph in which no vertex v ∈ V satisfies st(v) = V . If WΓ

decomposes as a product of direct truncated subgroups WΓ
∼= WΓV1

×WΓV2
, then both V1 and

V2 are lower cones with respect to ≤τ .

Proof. By the definition of direct truncated subgroups V is the disjoint union V = V1 ∪ V2.
Because of the direct product decomposition WΓ

∼= WΓV1
× WΓV2

each generator v ∈ V1

commutes with each generator w ∈ V2 and vice versa. If there were v ∈ V1, w ∈ V2 such that
lk(v) ⊂ st(w), then V2 ⊂ st(w) and so st(w) = V which is a contradiction. So there do not
exist any vertices v ∈ V1, w ∈ V2 such that v ≤τ w which implies that V2 is a lower cone. By
symmetry, V1 is a lower cone as well.

Definition 9.13. Let Γ = (V,E) be a graph and M ⊂ V be a subset. Define

LM = {v ∈ V | [v, w] 6= e for all w ∈M}.

By definition M ∩ LM = ∅ for all M . Equivalently, LM = {v ∈ V | st(v) ⊂ V −M} and so
LM = V − (

⋃
w∈M st(w)).

The next lemma is crucial for finding a lower cone in a graph such that the associated graph
product of the lower cone decomposes as a non-trivial free product.

Lemma 9.14. The setM∪LM is a lower cone with respect to≤τ for every minimal equivalence
class M ⊂ V of ∼τ . Moreover, if Gv is finite for all v ∈ V , then LM is itself a lower cone for
any subset M ⊂ V .

Proof. Let w ∈ V . If w ≤τ v for v ∈ M , then w ∈ M by the minimality of M with respect
to ≤τ . Now assume that w ≤τ v for v ∈ LM . If w has finite order, then w ≤s v. Therefore,
st(w) ⊂ st(v) ⊂ V − M and so w ∈ LM . Finally, if w has infinite order, then we have
lk(w) ⊂ st(v) ⊂ V −M . So either w ∈M or st(w) ⊂ V −M . Thus, w ∈M ∪ LM .

Lemma 9.15. Let M , N be two equivalence classes such that WΓN
is not a free group of rank

k ≥ 2. If N ∩ LM 6= ∅, then N ⊂ LM .

Proof. Let a ∈M and x ∈ N ∩LM . Then x ∈ LM implies that a /∈ lk(x). Since M ∩LM = ∅,
it follows that a /∈ st(x). Any y ∼τ x satisfies lk(y) ⊂ st(x). So a /∈ lk(y). Since WΓN

� Fk,
the vertices x and y are connected by an edge. Therefore, y /∈ M . So st(y) ∈ V −M . Since
a ∈M was chosen arbitrarily and y ∼τ x was chosen arbitrarily, it follows that N ⊂ LM .

Lemma 9.16 ([Mar20, Lemma 3.5]). If X ⊂ V is a lower cone with respect to ≤τ , then KX is
invariant under Aut0(WΓ).
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The following two lemma follows immediately from Lemma 9.16.

Lemma 9.17. Let X ⊂ V be a lower cone with respect to ≤τ that is invariant under labelled
graph automorphisms. Then KX is a characteristic subgroup of WΓ.

Lemma 9.18. Let ψ : WΓ → WΓ be a labelled graph automorphism. Then ψ preserves the
relation ≤τ . Consequently, ψ preserves equivalence classes of ∼τ .

Proof. Clearly, ψ satisfies |Gv| = |Gψ(v)| for all v ∈ V . Moreover, ψ(st(v)) ⊂ st(ψ(v)) for
all v ∈ V . By applying ψ−1 it follows that ψ(st(v)) = st(ψ(v)) for all v ∈ V . Therefore, ψ
preserves ≤τ and so ψ preserves equivalence classes of ∼τ .

Corollary 9.19. Let M,N be equivalence classes of ∼τ and let ψ : WΓ → WΓ be a labelled
graph automorphism. Then ψ(M) ∩N 6= ∅ if and only if ψ(M) = N .

Lemma 9.20. Let X ⊂ V be a lower cone with respect to ≤τ and Y be the orbit of X under
the action of labelled graph automorphisms. Then KY is a characteristic subgroup of WΓ.

Proof. By Lemma 9.18 the image of any lower cone under a labelled graph automorphism is
a lower cone. By Lemma 9.8 the union of lower cones is a lower cone itself and so the result
follows from Lemma 9.17.

Proposition 9.21. Let X ⊂ V be a lower cone with respect to ≤τ that is additionally invariant
under all labelled graph automorphisms. If WΓX

is a free product of k ≥ 2 freely indecom-
posable groups G1, . . . , Gk such that at least one of the Gi is not Z/2 and at most two are
infinite cyclic, then WΓ admits infinitely many linearly independent homogeneous Aut-invariant
quasimorphisms.

Proof. By Lemma 9.17 the kernel of the retraction map RX : WΓ → WΓX
is characteristic.

Consequently, by Lemma 2.23 any Aut-invariant quasimorphism of WΓX
gives rise to an Aut-

invariant quasimorphism on WΓ. The result follows from Theorem 7.3.

Example 9.22. Let Γ and Λ be the graphs pictured below. Consider the right angled Artin
groups RΓ and RΛ. Recall that in this case for any two vertices a, b the relation a ≤τ b, which
is by definition equivalent to the existence of the dominated transvection τa,b, is satisfied if and
only if lk(a) ⊂ st(b).

v0

v1

v2

v3 v4

Figure 1: graph Γ

w0

w1

w2

w3 w4

w5

w6

Figure 2: graph Λ

InRΓ the sets of verticesX = {v0, v4} and Y = {v1, v2, v3} both form minimal equivalence
classes of∼τ . Since the cardinality ofX and Y differs, both are preserved by any labelled graph
automorphism by Lemma 9.19 . Since RΓX

is the free product of two infinite cyclic groups,
Proposition 9.21 applies.

In RΛ the vertices w0 and w4 are not equivalent with respect to∼τ . In fact, RΛ contains four
equivalence classes A = {w0}, B = {w1, w2, w3}, C = {w4} and D = {w5, w6}, where C is
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the only equivalence class that is not minimal. Let X = A ∪D and Y = A ∪ C ∪D. Then X
and Y are both lower cones that are invariant under labelled graph automorphisms since such
automorphism preserve the cardinality of the star of each vertex. However, since RΛX

is the
group of rank three, Proposition 9.21 does not apply to X . Instead, Proposition 9.21 applies to
Y because RC∪D ∼= Z× F2 is freely indecomposable since it has non-trivial center.

9.2 Aut-invariant quasimorphisms on some classes of right angled Artin
groups

Proposition 9.23. Let Γ be a finite graph and RΓ be the right angled Artin group on Γ. Assume
that one of the following two conditions is satisfied

• There is a minimal equivalence class M of ∼τ such that RΓM
∼= F2,

• No equivalence class N of ∼τ satisfies RΓN
∼= Fk for k ≥ 2.

Then, either RΓ is a free abelian group or the space of homogeneous Aut-invariant quasimor-
phisms on RΓ has infinite dimension.

Proof. First, assume that M is a minimal equivalence class of ∼τ such that RΓM
∼= F2. Then

M is a lower cone of RΓ by Lemma 9.16. This implies that any unbounded Aut-invariant
quasimorphism on F2 gives rise to an unbounded Aut0-invariant quasimorphism on RΓ.

Let σ be a labelled graph automorphism of Γ and let ψ be an unbounded Aut-invariant quasi-
morphism on RΓM

. According to Lemma 9.19 either σ(M) = M , in which case σ descends to
an automorphism of RΓM

, or σ(M) ∩M = ∅. Since the labelled graph automorphisms {σi}
form a set of coset representative for Aut0(RΓ) in Aut(RΓ) according to Lemma 8.13 , the
quasimorphism ψ̂ ◦ p defined for g ∈ RΓ by ψ̂ ◦ p(g) =

∑
i ψ(p(σi(g))) is invariant under the

whole automorphism group Aut(RΓ) by Lemma 2.21.
Thus, for all g ∈ RΓM

≤ RΓ it holds that

ψ̂ ◦ p(g) =
∑
i

ψ(p(σi(g))) = |J |ψ(g),

where J is the subset of labelled graph automorphisms satisfying σi(M) = M . Clearly, |J | ≥ 1.
So the Aut-invariant quasmorphism ψ̂ ◦ p restricted to the subgroup RΓM

≤ RΓ is just a linear
multiple of ψ. Then the result follows from Theorem 6.1 , which in this case is due to [BrMa19,
Thm. 2].

Second, assume that no equivalence class N of ∼τ satisfies RΓN
∼= Fk for k ≥ 2. Then

every equivalence class N satisfies RΓN
∼= Zk for some k ≥ 1 by Lemma 9.6. Let M be a

minimal equivalence class. By Lemma 9.14 M ∪ LM is a lower cone. If LM = ∅, then M
commutes with all other elements. By Lemma 9.10 M is maximal and so V −M is a lower
cone. Proceed with choosing a minimal equivalence class in V −M and iterate the construction.
This process will either yield a nontrivial N such that LN is non-trivial or implies that RΓ is a
free abelian group itself. So we may now assume that LM is non-trivial and we consider the
lower cone M ∪ LM .

According to Lemma 9.15 any equivalence class N of ∼τ with N ∩ LM 6= ∅ is fully con-
tained inLM . LetN be a minimal equivalence class inLM . ThenM∪N is a lower cone. Conse-
quently, p : RΓ → RΓM

∗RΓN
is an Aut0-equivariant projection. Moreover,RΓM

∗RΓN
∼= Z`∗Zk

for some k, ` ≥ 1. Let ψ : RΓM
∗ RΓN

→ Z be an Aut-invariant quasimorphism. Let σ be la-
belled graph automorphism of Γ. According to Lemma 9.19 either σ(M) = M , in which case
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σ descends to an automorphism of RΓM
, or σ(M) ∩M = ∅. Since the labelled graph automor-

phisms {σi} form a set of coset representative for Aut0(RΓ) in Aut(RΓ) according to Lemma
8.13 , the quasimorphism ψ̂ ◦ p defined for g ∈ RΓ by ψ̂ ◦ p(g) =

∑
i ψ(p(σi(g))) is invariant

under the whole automorphism group Aut(RΓ) by Lemma 2.21.
Thus for any Aut-invariant quasimorphism ψ onRΓM

∗RΓN
and for all g ∈ RΓM

∗RΓN
≤ RΓ

we calculate

ψ̂ ◦ p(g) =
∑
i

ψ(p(σi(g))) = |J |ψ(g),

where J is the subset of labelled graph automorphisms satisfying {σ(M), σ(N)} = {M,N}.
Clearly, |J | ≥ 1. So restricted to the subgroup RΓM

∗ RΓN
≤ RΓ the Aut-invariant quasmor-

phism is just a linear multiple of ψ. Then the statement follows from Theorem 6.1.

Theorem 9.24. Let Γ = (V,E) be a finite graph with |V | ≥ 2 and such that no two distinct
vertices x, y ∈ V satisfy lk(v) ⊂ st(v). Then the space of homogeneous Aut-invariant quasi-
morphisms on the right angled Artin group RΓ has infinite dimension.

Proof. Since any equivalence class M of RΓ consisting of at least two vertices admits non-
trivial transvections by definition, every equivalence class of ∼τ consists of a single vertex.
Since there are two vertices that do not commute,RΓ cannot be free abelian. Thus, the statement
follows from Proposition 9.23.

9.3 Freely indecomposable graph products
Lemma 9.25. Let A ∗ B be a free product of two non-trivial groups. If x ∈ A ∗ B has finite
order then x is a conjugate of a letter belonging to A or B.

Proof. Let x ∈ A ∗ B be an element that has finite order and is not conjugate to a letter and
such that the reduced form w = c1 . . . ck of x has minimal length k among all elements of finite
order in A ∗ B that are not conjugate to a letter. If c1 and ck were letters from different factors,
the order of x would be infinite. So c1 and ck belong to the same factor. Let a be the letter
representing the product of ck with c1 in that factor. Then the reduced form of c−1

1 xc1 is given
by c2 . . . ck−1a, which has length k − 1 contradicting the minimality of x. Consequently, the
result follows.

Lemma 9.26. Let Γ be a connected graph of primary groups. Then WΓ is freely indecompos-
able.

Proof. Assume WΓ
∼= G1 ∗ G2. By Lemma 9.25 every element of finite order is conjugate

to a letter of G1 or G2. Let v ∈ Γ be a vertex generating a primary group Gv. Without loss
of generality we can assume that v is conjugate to a non-trivial letter of G1. That is, v can be
written as a reduced word ag1a

−1, where g1 ∈ G1 and a is a reduced word.
Let w be adjacent to v. Then w is conjugate to a non-trivial letter by Lemma 9.25. We

will prove by contradiction that w is a conjugate of a letter of G1 as well. Assume that w was
conjugate to a letter of G2. Then w can be written as a reduced word as bg2b

−1 where g2 ∈ G2.
Let c be the reduced form of a−1b. Since v and w are adjacent, they commute. Then

1 = a−1[v, w]a = a−1[ag1a
−1, bg2b

−1]a = g1a
−1bg2b

−1ag−1
1 a−1bg−1

2 b−1a

= g1cg2c
−1g−1

1 cg2c
−1.
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If c is the empty word, this yields a contradiction since g1 and g2 are non-trivial letters belonging
to different factors of the free product and so their commutator is non-trivial. Therefore, c is
non-trivial. If the last letter of c belongs toG2, then we define c0 to be the reduced word obtained
by omitting this last letter of c. Otherwise we set c0 = c. Then cg2c

−1 = c0g2c
−1
0 where the

latter expression is reduced. Consequently, the expression c0g
−1
2 c−1

0 is reduced and represents
cg−1

2 c−1. We compute

1 = a−1[v, w]a = g1cg2c
−1g−1

1 cg2c
−1 = g1c0g2c

−1
0 g−1

1 c0g
−1
2 c−1

0 .

Again, this would yield a contradiction if c0 represented the identity. However, if c0 was to begin
with a letter from G2, the expression g1c0g2c

−1
0 g−1

1 c0g
−1
2 c−1

0 would be reduced and therefore be
non-trivial as well. Therefore, c0 begins with a non-trivial letter x ∈ G1 and its reduced form
has length ≥ 2. Let c1 be the non-trivial reduced word obtained by omitting the first letter of
c0. Let y be the letter from G1 representing the product of g1 and x or empty if g1x = 1. Then
the product of reduced words yc1g2c

−1
1 g−1

1 c1g
−1
2 c−1

1 x−1 is a non-trivial reduced word itself and
represents the same element as g1c0g2c

−1
0 g−1

1 c0g
−1
2 c−1

0 . This is a contradiction.
Consequently, w is a conjugate of a letter belonging to G1. By induction it follows that all

vertex groups belong to the conjugacy class of G1 in W since Γ is connected. Since the vertex
groups generate WΓ, it follows that WΓ is completely contained in the conjugacy class of G1.
Then it lies in the kernel of the projection onto the factor G2 and so G2 is the trivial group. It
follows that WΓ is freely indecomposable.

9.4 Aut-invariant quasimorphisms on graph products of finite abelian
groups

Recall that a direct truncated subgroup of a graph product W on a graph Γ = (V,E) is spanned
by a subset of the vertex set V ′ ⊂ V such that W decomposes as a cartesian product of the
graph products on the subsets V ′ and V − V ′. Moreover, recall that by definition a graph
product of finite groups W is finite if and only if the underlying graph is complete since W has
a non-trivial free product as a subgroup otherwise. Finally, recall that we proved the existence
of Aut-invariant quasimorphisms on all free products of finite groups where not all factors are
equal to Z/2 in Theorem 7.3. In the proof of the following proposition we use the notion of
lower cones to produce Aut-invariant quasimorphisms on graph products of finite groups from
Aut-invariant quasimorphisms on free products.

Theorem 9.27. Let Γ = (V,E) be a finite graph that is not complete. Let {Gv}v∈V a family of
finite abelian groups and let W (Γ, {Gv}v∈V ) be their graph product. Let Zk be the k-fold free
product of groups of order two Zk = Z/2 ∗ · · · ∗ Z/2. Assume that W (Γ, {Gv}v∈V ) does not
decompose as a product G1 × · · · ×G` for ` ≥ 1 where each Gi is a direct truncated subgroup
that is isomorphic to some Zk for k ≥ 2 or finite abelian. Then the space of homogeneous
Aut-invariant quasimorphisms on W (Γ, {Gv}v∈V ) has infinite dimension.

Proof. We can replace Γ and {Gv}v∈V with a graph Γ′ and a collection of primary abelian
groups {G′v}v∈V such that W (Γ, {Gv}v∈V ) ∼= W (Γ′, {G′v}v∈V ) =: WΓ′ . If Γ′ has more than
one connected component, then WΓ′ is the free product of the graph products associated to the
connected components of Γ′. By Lemma 9.26 each of those connected components is itself
freely indecomposable and by assumption W (Γ, {Gv}v∈V ) is not a free product of groups of
order two. So Theorem 7.3 applies and the result follows.

Therefore, we may assume that Γ′ is a connected graph. Moreover, recall that by Lemma 8.8
if Zk is a direct truncated subgroup of W (Γ′, {G′v}v∈V ), then Zk is a direct truncated subgroup
in W (Γ, {Gv}v∈V ). We will outline an iterative procedure proving the following claim.
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Claim. If W (Γ, {Gv}v∈V ) is not finite, there exists a lower cone L in Γ′ and n ≥ 2 such that
WΓ′L

is a free product of W1, . . . ,Wn, the groups generated by the connected components of L,
such that W1, . . . ,Wn are not infinite cyclic and are not all equal to Z/2.

If st(v) = V for some v ∈ V , then the equivalence class [v] ⊂ V is maximal with respect to
≤τ by Lemma 9.10. Thus, V − [v] is a lower cone with respect to≤τ andWΓ′

∼= WΓ′
[v]
×WΓ′−[v]

where Γ′ − [v] is the subgraph of Γ′ spanned by all vertices v ∈ V − [v]. According to Lemma
9.6 the group WΓ′

[v]
is finite and abelian. We then proceed by considering the graph Γ′ − [v].

Therefore, we will assume in the following that no v ∈ V satisfies st(v) = V .
From now onwards let M be an equivalence class which is minimal with respect to ≤τ .

Again, Lemma 9.6 implies that M generates a finite abelian group WΓ′M
in WΓ′ , since all G′v

are finite. Moreover, st(v) = st(w) for all v, w ∈ M . We consider the set of vertices M ∪ LM
which form a lower cone with respect to≤τ according to Lemma 9.14. The setLM is non-empty
since st(v) 6= V for v ∈ M . Since no vertex v ∈ M shares an edge with a vertex w ∈ LM , the
group WM∪LM

decomposes as a free product WM ∗WLM
.

Since no free factor can be the infinite cyclic group this proves the claim unless WM
∼= Z/2

and all connected components of LM consist of single vertices with vertex groups equal to Z/2.
Then M = {x} and LM = {y1, . . . , y`} for some ` ≥ 1 and both are lower cones with respect
to ≤τ according to Lemma 9.14. In fact, since all equivalence classes generate finite abelian
groups, this implies that each vertex yi is its own equivalence class and therefore minimal since
LM is a lower cone. All vertices in V − (M ∪ LM) commute with x by definition of LM . If
there was z ∈ V − (M ∪ LM) such that [z, yi] 6= 1 for some i, then x, z ∈ L{yi}. In this case
{yi} ∪ L{yi} would be a lower cone for which W{yi}∪L{yi} decomposes as a free product of two
freely indecomposable factors which are not all equal to Z/2 since one connected component
contains an edge.

Otherwise, we are in the situation where x and all yi commute with all other vertices. Then
M ∪ LM generates a direct truncated subgroup in Γ′ that is isomorphic to Zk. By Lemma 8.8
Zk comes from a direct truncated subgroup spanned by the same vertex set in W (Γ, {Gv}v∈V ).
By Lemma 9.12 the complement V − (M ∪ LM) is a lower cone and we restart the iterative
procedure using the graph ΓV−(M∪LM ). If WΓ is not finite, this process either terminates with
a lower cone as specified in the claim or yields a decomposition of WΓ into direct truncated
subgroups all of which are of the form Zk for some k ≥ 2. However, the latter is impossible by
assumption. This proves the claim.

The claim implies by Lemma 9.16 and Lemma 7.1 there exists an Aut0-equivariant map
p : WΓ′ → Wa ∗Wb for some a, b ∈ {1, . . . , n} such that Wa ∗Wb � D∞. Let A and B be
minimal equivalence classes in Wa and Wb respectively. We distinguish two cases.

First, consider the case where ΓA and ΓB are not both equal to Z/2. These two equivalence
classes are lower cones themselves, which means that the projection q : WΓ′ → WΓA

∗WΓB
is

Aut0-equivariant. Let ψ : WΓA
∗WΓB

→ R be any unbounded Aut-invariant quasimorphism
which always exists according to Theorem 6.1. Then ψ ◦ p is an unbounded Aut0-invariant
quasimorphism on WΓ′ . Since the labelled graph automorphisms {σi} form a set of coset rep-
resentative for Aut0(WΓ′) in Aut(WΓ′) according to Lemma 8.13 , the quasimorphism ψ̂ ◦ q
defined for g ∈ WΓ′ by ψ̂ ◦ q(g) =

∑
i ψ(q(σi(g))) is invariant under the whole automorphism

group Aut(WΓ′) by Lemma 2.21. It remains to check that it is unbounded.
Any labelled graph automorphism σ ∈ Aut(WΓ′) satisfies by Lemma 9.19

σ(A) ∩ A, σ(A) ∩B, σ(B) ∩ A, σ(B) ∩ A ∈ {A,B}.
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Thus, any labelled graph automorphism either descends to an automorphism of WΓ′A
∗WΓ′B

or
satisfies that q(σ(w)) is a single letter in WΓ′A

∗WΓ′B
for all words w ∈ WΓ′A

∗WΓ′B
. Let J ≤ I

be the subset of labelled graph automorphisms inWΓ′ that descend toWΓ′A
∗WΓ′B

. Then |J | ≥ 1
and for all g ∈ WΓ′M

∗WΓ′N
considered as a subgroup of WΓ′ one calculates

ψ̂ ◦ q(g) =
∑
i

ψ(q(σi(g))) = |J |ψ(g).

Therefore, the Aut-invariant quasimorphism ψ̂ ◦ p is unbounded on WΓ′ . Finally, linear inde-
pendence of quasimorphisms constructed in this way follows from linear independence of the
quasimorphisms in Theorem 6.1.

Second, consider the case where all non-trivial minimal equivalence classes A in Wa and B
in Wb just consist of single vertices A = {v1} and B = {v2} with both vertex groups equal to
Z/2. Then we need to adjust our strategy from the previous part since D∞ is bounded.

Since Wa and Wb are freely indecomposable, both of them are connected. Since it holds
that Wa ∗Wb � D∞, there exists a second vertex in at least one of them. So without loss of
generality we assume there is v3 ∈ Wb that is adjacent to v2. Replace Wa by just Gv1 since {v1}
is a lower cone itself and denote the resulting projection map WΓ′ → Gv1 ∗Wb again by p for
simplicity. Let σ be a labelled graph automorphism of WΓ′ . We will proceed similarly to the
first case of the proof to show that the symmetrisation of the homogenisation of our counting
quasimorphisms is unbounded, by showing that it is unbounded when we restrict to suitable
subgroups of WΓ. For this we distinguish the cases where Gv3 is not equal to Z/2 and where it
is.

If Gv3 6= Z/2 then σ(v3) = v1 and σ(v1) = v3 are impossible. So if we have p(σ(v1)) 6= 0
and p(σ(v3)) 6= 0, then either σ(v1), σ(v3) both belong to Wb or σ(v1) = v1 and σ(v3) ∈ Wb.
Therefore, restricted to the subgroupGv1∗Gv3 either a labelled graph automorphism σ preserves
the Wb-code or the result is a letter. Consequently, we calculate using Lemma 5.9 for the last
equality that

( ¯̂fWb
z ◦ p)|Gv1∗Gv3

=
∑
i

f̄Wb
z (p(σi|Gv1∗Gv3

)) = |J | · (f̄Wb
z )|Gv1∗Gv3

= |J | · f̄Gv3
z ,

where J is the subset of labelled graph automorphisms satisfying σ(v1) and σ(v3) ∈ Wb. Since

J contains the identity, |J | ≥ 1. Therefore, ¯̂fWb
z ◦ p is unbounded by Proposition 4.11 which

proves the result in this case.
However, if Gv3 = Z/2, then p(σ(Gv1 ∗ (Gv2 × Gv3))) ≤ D∞ ≤ Wa ∗Wb if σ(v2) = v1

or σ(v3) = v1 since v2 and v3 are adjacent. So p(σ(Gv1 ∗ (Gv2 × Gv3))) is a subgroup of of a
group belonging to the set {D∞,Wa,Wb} unless σ(v1) = v1 and σ({v2, v3}) ⊂ Wb. Similarly
to the previous case we calculate

( ¯̂fWb
z ◦ p)|Gv1∗(Gv2×Gv3 ) =

∑
i

f̄Wb
z (p(σi|Gv1∗(Gv2×Gv3 ))) = |J | · (f̄Wb

z )|Gv1∗(Gv2×Gv3 )

= |J | · f̄Gv2×Gv3
z ,

where we again used Lemma 5.9 for the last equality and J denotes the subset of labelled graph

automorphisms satisfying σ(v1) = v1 and σ({v2, v3}) ⊂ Wb. As before, |J | ≥ 1, so ¯̂fWb
z ◦ p

is unbounded by Proposition 4.11. This concludes the last case and proves the result of the
theorem.
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Aut-invariant quasimorphisms on free products and generalisations

Corollary 9.28. Let Γ = (V,E) be a finite graph. Let {Gv}v∈V be a family of finite abelian
groups and let W (Γ, {Gv}v∈V ) be their graph product. If no vertex group is equal to Z/2 then
either W (Γ, {Gv}v∈V ) is finite or W (Γ, {Gv}v∈V ) admits infinitely many linearly independent
unbounded homogeneous Aut-invariant quasimorphisms.

Proof. If the k-fold free product of groups of order two Zk = Z/2 ∗ · · · ∗ Z/2 is a truncated
subgroup H of W (Γ, {Gv}v∈V ) on the vertex set V ′ ⊂ V , then for v′ ∈ V ′ all vertex groups
Gv′ are groups of order two since H is the free product of the connected components of ΓV ′ .
Consequently, if there is Gv 6= Z/2 for v ∈ V , then W (Γ, {Gv}v∈V ) does not decompose as a
product of direct truncated subgroups each of which is isomorphic to some Zk for k ≥ 2. The
result follows from Theorem 9.27.

Remark 9.29. This is a super-strong version of the bq-dichotomy studied in [BGKM16], where
instead of boundedness of a group G one has finiteness and instead of any unbounded quasi-
morphism on G one has unbounded quasimorphisms that are invariant under all automorphisms
of G.

Theorem 9.30. Γ = (V,E) be a finite graph that is not complete and letWΓ be a graph product
of finite abelian groups on Γ. If there are no two vertices v, w ∈ V such that Gv = Gw = Z/2
and lk(v) = lk(w), then WΓ admits infinitely many linearly independent homogeneous Aut-
invariant quasimorphisms.

Proof. If the k-fold free product Zk = Z/2 ∗ · · · ∗ Z/2 is a direct truncated subgroup of WΓ,
then all vertices generating the free factors of Zk have the same link. So by assumption Zk
can never be a direct truncated subgroup of WΓ for any k ≥ 2. Then the result follows from
Theorem 9.27.

In particular, we obtain the following corollary as a special case.

Corollary 9.31. Let Γ = (V,E) be a finite graph in which no two vertices have the same
link. Then either Γ is a complete graph in which case all graph products of finite groups on
Γ are finite or any graph product of finite abelian groups on Γ admits infinitely many linearly
independent homogeneous Aut-invariant quasimorphisms.

10 Examples of graph products
In this section we consider some families of graphs as examples and analyse which graph prod-
ucts of finite groups and which right angled Artin groups on these graphs admit unbounded
Aut-invariant quasimorphisms. For a graph Γ we will denote by WΓ the graph product of a
family of finite groups on Γ and by RΓ the right angled Artin group on Γ. Implicitly, we expand
Γ to Γ′ so that WΓ′

∼= WΓ is a graph product where each vertex group is primary if this was not
already the case for WΓ. Further, recall that groups of the form (D∞)k × A do not admit any
unbounded Aut-invariant quasimorphisms for all k ≥ 0 whenever A is abelian.

Example 10.1. Let Γn be the graph of the regular n-gon. If n = 3, thenWΓ3
∼= Gv1×Gv2×Gv3

and RΓ3
∼= Z3 are always abelian.

n = 3 n = 4 n = 5 n = 6
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For n ≥ 5 the links of no two vertices are equal and so WΓn always admits infinitely many
linearly independent Aut-invariant quasimorphisms according to Corollary 9.31. Moreover, the
condition lk(v) ⊂ st(w) is never satisfied for any distinct vertices v, w and so RΓn does not
admit any transvections. Therefore, it follows from Corollary 9.24 that RΓn admits infinitely
many linearly independent Aut-invariant quasimorphisms.

For n = 4 it follows from Theorem 9.27 that WΓ4 has infinitely many linearly independent
homogeneous Aut-invariant quasimorphisms except for the single case where all vertex groups
are Z/2 and so WΓ4

∼= D∞×D∞. Furthermore, for RΓ4
∼= F2×F2 opposite vertices belong to

the same equivalence class with respect to ∼τ . Both of these classes are minimal and it follows
from Proposition 9.23 that RΓ4 admits infinitely many linearly independent homogeneous Aut-
invariant quasimorphisms.

Example 10.2. Let Γn be the graph given by the 1-skeleton of the n-cube. Clearly, for n = 1
we have that WΓ1

∼= Gv1 × Gv2 and RΓ1
∼= Z2 are abelian. The case n = 2 is the case of the

regular 4-gon discussed in Example 10.1 above.

n = 1 n = 2 n = 3

n = 4

Let n ≥ 3. The links of no two vertices are equal and the condition lk(v) ⊂ st(w) is never satis-
fied for any two distinct v, w ∈ Vn. Consequently, it follows from Corollary 9.31 and Corollary
9.24 that WΓn and RΓn always admit infinitely many linearly independent Aut-invariant quasi-
morphisms.

Example 10.3 (Platonic solids). The graph given by the tetrahedron T is the complete graph
on 4 vertices and therefore WT

∼= Gv1 ×Gv2 ×Gv3 ×Gv4 and RT
∼= Z4 are abelian. The cube

C is the case n = 3 of Example 10.2 above. For the icosahedron I and the dodecahedron D
the conditions lk(v) = lk(w) and lk(v) ⊂ st(w) are both never satisfied for distinct vertices
v, w. It follows from Corollary 9.31 and Corollary 9.24 that WI , WD, RI and RD all admit
infinitely many linearly independent Aut-invariant quasimorphisms. Let O be the graph of the
octahedron pictured below.

w

v

b

d

c

a

In RO there are the three equivalence classes {a, c}, {b, d} and {v, w}, all of which are minimal
with respect to∼τ and generate F2. So it follows from Proposition 9.23 thatRO admits infinitely
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many linearly independent Aut-invariant quasimorphisms. In WO any two opposite vertices
have the same link and WO

∼= (Gv ∗ Gw) × (Ga ∗ Gc) × (Gb ∗ Gd) as a product of direct
truncated subgroups. It follows from Theorem 9.27 that WO admits infinitely many linearly
independent Aut-invariant quasimorphisms unless all vertex groups are equal to Z/2 in which
case WO is isomorphic to (D∞)3.

In the above examples we can never find lower cones invariant under labelled graph auto-
morphisms that are not the whole graph. Let us see in some less symmetrical graphs how we
can extract Aut-invariant quasimorphisms by more elementary means from lower cones and
Proposition 9.21 without appealing to the full strength of Theorem 9.27.

Example 10.4. LetAn denote the graph given by the standard triangulation of the interval [0, n]
with all integers in [0, n] as vertices and edges of length one in between them.

v0 v1 v2 vn−1 vn

For n = 0, 1 the groups WAn and RAn are all abelian and so none of them admit unbounded
Aut-invariant quasimorphisms.

For n ≥ 2 the set {v0, vn} is a lower cone that is invariant under labelled graph automor-
phisms. Then it follows directly from Proposition 9.21 that RAn and WAn admit infinitely many
linearly independent homogeneous Aut-invariant quasimorphisms except for WAn in the case
where Gv0 = Gvn = Z/2. So assume that Gv0 = Gvn = Z/2 for the rest of this example. For
n ≥ 4 the set {v0, v1, vn−1, vn} forms a lower cone as well and Proposition 9.21 again yields the
existence of infinitely many linearly independent homogeneous Aut-invariant quasimorphisms.
For n = 2 it holds that WA2

∼= Gv1×D∞ and so WA2 does not admit any unbounded quasimor-
phisms since D∞ does not according to Example 2.13 and Gv2 is finite. Only to settle the case
n = 3 we note that no two distinct vertices have the same link and so Corollary 9.31 yields the
existence of infinitely many linearly independent Aut-invariant quasimorphisms.

Remark 10.5. The particular choice of lower cone is usually not unique. For example, for
n ≥ 8 the set {v2, v3, v5, v6} is a lower cone that intersects trivially with the lower cone
{v0, v1, vn−1, vn} chosen in the argument before. Different choices of lower cones yield en-
tirely different Aut-invariant quasimorphisms.

Example 10.6. Let Bn denote the graph which is An−2 with two additional vertices attached to
the vertex n− 2. So Bn has n+ 1 vertices. Then B2 is the graph A2 of Example 10.4 above.

v0 v1 v2 vn−3 vn−2

vn−1

vn

For n ≥ 4 the set {vn−2, vn−1, vn} forms a lower cone of WBn and RBn respectively. More-
over, {v0} is a minimal equivalence class with respect to ∼τ . So {v0, vn−2, vn−1, vn} forms a
lower cone L of WBn and RBn . L is invariant under labelled graph automorphisms and the
truncated subgroup generated by L is isomorphic to Gv0 ∗

(
Gvn−2 × (Gvn−1 ∗Gvn)

)
. Since the

group Gvn−2 × (Gvn−1 ∗ Gvn) has non-trivial center, it is freely indecomposable. So Proposi-
tion 9.21 implies that WBn and RBn admit infinitely many linearly independent homogeneous
Aut-invariant quasimorphisms for all n ≥ 4.
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For n = 3 the vertices {v0, v2, v3} form a lower cone. By Proposition 9.21 the graph product
WB3

∼= Gv1 × (Gv0 ∗ Gv2 ∗ Gv3) admits infinitely many linearly independent quasimorphisms
if Gv0 , Gv2 , Gv3 are not all equal to Z/2.

Remark 10.7. With our methods we cannot settle the case n = 3 for Bn fully since we do not
know whether F3 or Z/2 ∗ Z/2 ∗ Z/2 admit unbounded Aut-invariant quasimorphisms.

11 Aut-invariant stable commutator length
For any group G let clG denote the commutator length on [G,G], which is defined to be the
minimal number of commutators required to produce a given element of the commutator sub-
group. Let sclG(x) = limn

cl(xn)
n

denote the stable commutator length of x ∈ [G,G]. It shares
a deep relationship with quasimorphisms on G through the so-called Bavard duality [Bav91].
We will now define the Aut-invariant (stable) commutator length; this is a special case of the
so-called Ĝ-invariant (stable) commutator length defined in [KaKi20] for groups Ĝ in which G
is a normal subgroup.

Definition 11.1. Let G ≤ Ĝ be a normal subgroup. Consider the subgroup [Ĝ, G] ≤ G gen-
erated by commutators of the form [F, g] and their inverses where F ∈ Ĝ and g ∈ G. Then
for x ∈ [Ĝ, G] the Ĝ-invariant commutator length clĜ,G(x) is defined to be the minimal length
of an expression of x as a product of commutators [F, g] and their inverses where F ∈ Ĝ
and g ∈ G. The Ĝ-invariant stable commutator length sclĜ,G is defined for x ∈ [Ĝ, G] by

sclĜ,G(x) = limn
clĜG(xn)

n
.

Given any group G, its inner automorphism group Inn(G) is a normal subgroup of Aut(G)
and so the above definition applies to Inn(G). If G has trivial center, G can be identified with
Inn(G). In this case we simplify the notation by denoting the Aut(G)-invariant commutator
length simply as clAut and the Aut(G)-invariant stable commutator length simply as sclAut.

Setting Ĝ = Aut(G) the following lemma is proven in [KaKi20, Lemma 2.1].

Lemma 11.2. LetG be a group with trivial center so thatG = Inn(G). Let φ be a homogeneous
Aut-invariant quasimorphism on G. Then any x ∈ [Aut(G), G] ≤ G satisfies

sclAut(x) ≥ 1

2

|φ(x)|
D(φ)

.

In fact, according to [KaKi20, Theorem 1.3] Ĝ-invariant quasimorphisms satisfy an ana-
logue Bavard’s duality theorem if [Ĝ, G] = G. All free products A ∗ B of freely indecompos-
able groups A and B have trivial center and so the notions clAut and sclAut apply. However, free
products often fail to satisfy [Aut(G), G] = G. We will use a constructive approach rather than
relying on an invariant analogue of Bavard’s duality in the following.

Example 11.3. For D∞ = Z/2 ∗Z/2 it holds that sclAut ≡ 0. To see this denote the generators
of the Z/2 factors by a and b and let s be the automorphism of D∞ interchanging a and b.
Then we calculate [s, a] = sas−1a−1 = s(a)a−1 = ba and [s, b] = ab = (ba)−1. Since the
total number of letters appearing in any expression of the form [f, x] is always even where
f ∈ Aut(D∞) and x ∈ D∞, it holds that [Aut(D∞), D∞)] ∼= Z generated by ba. In fact, any
power (ba)k for k ∈ Z can be written as a single commutator [s, w], where w is one of the two
words of length |k|. Thus, clAut is equal to one for any non-trivial element in [Aut(D∞), D∞)]
and sclAut vanishes.
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Example 11.4. Consider G = PSL(2,Z) = Z/3 ∗ Z/2. Then Aut(G) is generated by the set
C consisting of the non-trivial factor automorphism of Z/3 and conjugations by letters of Z/3
and Z/2, since both free factors are abelian groups. Consequently, [Aut(G), G] is normally
generated by commutators of the form [c, g] = cgc−1g−1 = c(g)g−1 for c ∈ C and g ∈ G. In
all expressions [c, g] the letter b representing the non-trivial element of the factor Z/2 arises an
even number of times. Therefore, b /∈ [Aut(G), G] and the latter is not the full group G.

11.1 In free products
Lemma 11.5. Let G = A ∗B be a free product of freely indecomposable groups where at least
one of the factors is infinite cyclic. Then [Aut(G), G] has index at most 2 in G. Therefore, any
unbounded quasimorphism on G is unbounded when restricted to [Aut(G), G].

Proof. If a quasimorphism q : G → R is bounded by a constant C on a finite index subgroup
H ≤ G, then the image of q is bounded on G by C + Dq + maxi |q(gi)| where {gi} is a finite
system of coset representatives of H in G. Therefore, any quasimorphism q with unbounded
image cannot be bounded on H . So, it remains to show that the index of [Aut(G), G] in G is
finite to prove the lemma.

First, consider the case whereA andB are both infinite cyclic and soG can be identified with
F2, the free group of rank 2. Let x and y be standard generators. Consider the automorphism
ϕ of F2 defined by ϕ(x) = yx and ϕ(y) = y. Then [ϕ, x] = ϕ(x) · x−1 = y and thus
〈y〉 ≤ [Aut(F2), F2]. By symmetry of the generating set it holds that 〈x〉 ≤ [Aut(F2), F2] as
well and it follows that [Aut(F2), F2] = F2.

Second, consider the case where only one of the factors is infinite cyclic. Without loss of
generality assume A = Z. Let x denote a generator of A. For any b ∈ B we can define
the transvection ϕb on x by ϕb(x) = bx and by ϕb(b′) = b′ for all b′ ∈ B. Then ϕb is an
automorphism and satisfies [ϕb, x] = ϕb(x) · x−1 = b for all b ∈ B. Thus, B ≤ [Aut(G), G].
Denote the non-trivial factor automorphism of A = Z by f . Then [f, x] = f(x) · x−1 = x−2

and we deduce that 2Z ≤ [Aut(G), G]. Therefore, 2Z ∗ B ≤ [Aut(G), G]. Since [Aut(G), G]
is a normal subgroup, it holds that N ≤ [Aut(G), G] where N is the normal closure of 2Z ∗B.
However, G/N ≤ Z/2 and so [Aut(G), G] has at most index 2 in G.

Theorem 11.6. Let G = A ∗ B be a free product of freely indecomposable groups and assume
that G is not the infinite dihedral group. Then there always exist elements g ∈ G with positive
Aut-invariant stable commutator length sclAut(g) > 0.

Proof. If one of the factors is infinite cyclic, Theorem 6.1 implies the existence of an unbounded
Aut(G)-invariant homogeneous quasimorphism, which is unbounded on [Aut(G), G] according
to Lemma 11.5. The statement then follows from Lemma 11.2.

Assume from now on that neither A nor B is infinite cyclic. We will prove the theorem by
explicitly constructing an element in [Aut(G), G] together with a homogeneous Aut-invariant
quasimorphism which is non-trivial on that element. The only non-trivial group with no non-
trivial automorphisms is Z/2. Thus, one of the factors has to have a non-trivial automorphism
since A ∗B is not the infinite dihedral group.

Without loss of generality assume that A satisfies |Aut(A)| ≥ 2. Let a1 ∈ A be such
that f(a1) = a2 6= a1 for some f ∈ Aut(A). Then we compute that [f, a1] = a2a

−1
1 is a

non-trivial element in [Aut(G), G]. Since [Aut(G), G] is normal, it holds for any h ∈ B that
ha2a

−1
1 h−1 ∈ [Aut(G), G]. Thus, (a2a

−1
1 ha2a

−1
1 h−1)k ∈ [Aut(G), G] for any k ∈ N and

h ∈ B.
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First, assume that A and B are not isomorphic. Since |Aut(A)| ≥ 2, it holds that |A| ≥ 3
and we can choose a non-trivial a 6= a2a

−1
1 and fix some non-trivial h ∈ B. We define for

n1, . . . , n` ∈ N the word

w =
∏̀
i=1

(
[a, h](a2a

−1
1 ha2a

−1
1 h−1)ni

)
∈ [Aut(G), G].

We calculate

A-code(w) =

{
(1, 1, 2n1, 1, 1, 2n2, . . . , 1, 1, 2n`) if a−1 6= a2a

−1
1 ,

(1, 2n1 + 1, 1, 2n2 + 1, . . . , 1, 2n` + 1) if a−1 = a2a
−1
1 .

Set z = A-code(w). For all n ∈ N it holds that A-code(wn) = (z, . . . , z). Choose ` ≥ 3
together with large and distinct n1, . . . , n` ∈ N, which implies that z is generic. It follows
from Proposition 4.11 that f̄Az is an Aut-invariant quasimorphism. By construction fAz satisfies
fAz (wn) = n for all n ∈ N and so f̄Az (w) > 0 for our choice of w ∈ [Aut(G), G]. The statement
then follows from Lemma 11.2.

Second, assume A ∼= B. Let s denote a swap automorphism. Set bi = s(ai) for i ∈ {1, 2}.
Then the element [sfs−1, b1] = b2b

−1
1 ∈ [Aut(G), G] is non-trivial and belongs to the factor B.

Set b = s(a). Then a−1 = a2a
−1
1 is equivalent to b−1 = b2b

−1
1 . For n1, . . . , n` ∈ N we define

the word

w =
∏̀
i=1

(
[a, b](a2a

−1
1 b2b

−1
1 )ni

)
∈ [Aut(G), G].

Observe, that A-code(w) = B-code(w). As in the previous case,

A-code(w) =

{
(1, 1, n1, 1, 1, n2, . . . , 1, 1, n`) if a−1 6= a2a

−1
1 ,

(1, n1 + 1, 1, n2 + 1, . . . , 1, n` + 1) if a−1 = a2a
−1
1 .

Set z = A-code(w) as before and choose ` ≥ 3 and n1, . . . , n` ∈ N large enough and dis-
tinct, so that z is generic. Again, we calculate fAz (wn) = n = fBz (wn), which implies that
(f̄Az + f̄Bz )(w) > 0. Proposition 4.11 implies that f̄Az + f̄Bz is an homogeneous Aut-invariant
quasimorphism and so applying Lemma 11.2 concludes the proof.

Corollary 11.7. Let G = G1 ∗ · · · ∗ Gk be a free product of freely indecomposable groups.
Assume that there exist distinct i, j ∈ {1, . . . , k} such that Gi, Gj are not both equal to Z/2
and any other free factor Gk neither is isomorphic to Gi or Gj nor is infinite cyclic. Then there
exist g ∈ G with positive Aut-invariant stable commutator length sclAut(g) > 0.

Proof. Let H = Gi ∗ Gj . We claim that the projection p : G → H is Aut-equivariant, i.e. any
automorphism of G descends via p to an automorphism of Gj ∗Gk. This is equivalent to ker(p)
being a characteristic subgroup of G.

Recall, that by [Gil87] Aut(G) is generated by factor automorphisms, swap automorphisms,
partial conjugations and transvections. It is clear that all factor automorphisms and all partial
conjugations of G descend to automorphisms of Gj ∗Gk via p. By our assumption there are no
swap automorphisms permuting any other free factors in G with Gj and Gk, so these descend
to the quotient as well. It only remains to check the equivariance of the projection with respect
to transvections for the case where Gj or Gk happen to be infinite cyclic. So let Gj be infinite
cyclic generated by x and let a be a letter from a different factor G`. If ` = k, then any
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transvection ϕa defined by ϕa(x) = ax or ϕa(x) = xa descends via p to the same transvection
on Gj ∗ Gk. If ` 6= k, any such transvection descends to the identity on Gj ∗ Gk. Since a
generating set of Aut(G) descends to automorphisms of the quotient Gj ∗ Gk, any element of
Aut(G) does so. Consequently, the map p is Aut-equivariant. In fact, p induces a surjection
Aut(G)→ Aut(H).

Therefore, p induces a surjective map p? : [Aut(G), G] → [Aut(H), H]. Since all g ∈ G
satisfy sclAut(p(g)) ≤ sclAut(g), the result follows by applying Theorem 11.6 to H .

We will now give a few more examples of free products G where [Aut(G), G] = G and
therefore the notions of Aut-invariant (stable) commutator length are defined on all elements of
G.

Example 11.8. For a product G = A∗B of two freely indecomposable perfect groups A and B
it holds that [Aut(G), G] = G. Indeed, sinceA perfect, it holds thatA = [A,A] ≤ [Aut(G), G].
Similarly, B ≤ [Aut(G), G] and A and B generate G it follows that [Aut(G), G] = G.

Example 11.9. G = Z/p ∗ Z/q satisfies [Aut(G), G] = G for p, q ≥ 3 prime. Indeed, let
m : Z/p→ Z/p be multiplication by 2, which is a factor automorphism. Consider the standard
generator 1p ∈ Z/p. It holds that [m, 1p] = m(1p) − 1p = 1p. Thus, Z/p ≤ [Aut(G), G].
Similarly, Z/q ≤ [Aut(G), G] and so [Aut(G), G] = G.

Example 11.10. Let k, ` ≥ 2. Then G = Ak ∗ B` satisfies [Aut(G), G] = G for all non-trivial
abelian groups A and B. For simplicity of notation consider the case k = 2. Let φ be the
factor automorphism defined by φ(a, 0) = (a, a) and φ(0, a) = (0, a) for all a ∈ A. Then
[φ, (a, 0)] = φ(a, 0)− (a, 0) = (a, 0) for all a ∈ A. Thus, A× 0 ≤ [Aut(G), G]. Analogously,
0 × A ≤ [Aut(G), G]. Since these factors generate A2 it follows that A2 ≤ [Aut(G), G].
Similarly, B` ≤ [Aut(G), G] and so [Aut(G), G] = G.

Example 11.11. In all of the above examples for G = A ∗ B the equality [Aut(G), G] = G is
always derived by showing that both factors A and B form subgroups of [Aut(G), G]. Thus,
any combination of free factors appearing in the three examples above still satisfies this equality,
for example A = Z/p for p ≥ 3 prime and B any freely indecomposable perfect group.

11.2 In graph products
For many graph products of finitely generated abelian groups the invariant sclAut is defined on
a subgroup of finite index. In fact, it is often defined on the whole graph product.

Proposition 11.12. Let Γ = (V,E) be a graph. Let {Gv}v∈V be a collection of finitely gen-
erated abelian groups and let G = W (Γ, {Gv}v∈V ) be their graph product. Assume that no
vertex v satisfying st(v) = V has a vertex group satisfying |Gv| =∞. Let Ĝ = Aut(G). Then
[Ĝ, G] is a subgroup of finite index in G. Moreover, if no vertex v ∈ V satisfies st(v) = V and
no element inside any vertex group Gv has infinite order or order equal to a power of 2, then
[Ĝ, G] = G.

Proof. Since W (Γ, {Gv}v∈V ) is isomorphic to a graph product of groups where every vertex
group is either primary or infinite cyclic, we assume without loss of generality that this is the
case for Γ = (V,E) and {Gv}v∈V and write WΓ = W (Γ, {Gv}v∈V ). Moreover, if no element
inside any vertex group has infinite order or order equal to a power of 2, then all vertex groups
can be assumed to be primary for primes 6= 2.
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By Corollary 8.10 the center ofWΓ is generated by all v ∈ V satisfying st(v) = V . Since all
vertex groups Gv of those vertices are finite abelian groups, the center of WΓ is a finite abelian
group and we may assume up to passing to a finite index subgroup of WΓ, that WΓ has trivial
center.

The abelianisation WΓ/[WΓ,WΓ] is obtained by taking the quotient over all [Gv, Gw] for
v, w ∈ V . Consequently, WΓ/[WΓ,WΓ] =

⊕
v∈V Gv. If no vertex group Gv has infinite order

this implies that [ŴΓ,WΓ] has finite index, since [WΓ,WΓ] ≤ [ŴΓ,WΓ]. Otherwise let v ∈ V
be such that Gv is infinite cyclic and by abuse of notation denote a generator of Gv by v as
well. Since st(v) 6= V , conjugation by v defines a nontrivial element inside Aut(WΓ). Let
r ∈ Aut(WΓ) be the factor automorphism of WΓ that inverts v. In Aut(WΓ) we compute
[r, v−1] = r(v−1) · v = v2. Thus, the subgroup generated by v2 is contained in [ŴΓ,WΓ] as
well. Let H be the group

⊕
v∈V ′ Gv ⊕

⊕
v∈V \V ′ Gv/2 where V ′ = {v ∈ V : |Gv| < ∞} .

H is a finite group and maps surjectively onto WΓ/[ŴΓ,WΓ] , which implies that [ŴΓ,WΓ] has
finite index in WΓ.

For the second part of the statement assume that all vertex groups are primary for primes not
equal to 2. Let k ≥ 1 and let p 6= 2 be a prime. Then m : Z/pk → Z/pk induced by multiplica-
tion by 2 is an automorphism. Consider Gv = Z/pk and regard m as the corresponding factor
automorphism of WΓ. Then [m, v] = m(v) · v−1 = v2 · v−1 = v. Therefore, Gv is a subgroup
of [ŴΓ,WΓ]. Since WΓ is generated by the vertex groups, it follows that [ŴΓ,WΓ] = WΓ.

Let Zk be the k-fold free product of groups of order two Zk = Z/2 ∗ · · · ∗ Z/2.

Proposition 11.13. Let Γ = (V,E) be a finite graph in which st(v) 6= V for all v ∈ V . Then
there always exist elements of positive Aut-invariant stable commutator length in the following
groups:

1. W (Γ, {Gv}v∈V ), the graph product of a family of finite abelian groups {Gv}v∈V , if the
group W (Γ, {Gv}v∈V ) does not decompose as a product G1 × · · · ×G` for ` ≥ 1 where
each Gi is a direct truncated subgroup that is isomorphic to some Zk for k ≥ 2 or finite
abelian.

2. RΓ, the right angled Artin group on Γ, if one of the following two conditions is satisfied:

• There is a minimal equivalence class M of ∼τ such that RΓM
∼= F2,

• No equivalence class N of ∼τ satisfies RΓN
∼= Fk for k ≥ 2.

Proof. By assumption all groups have trivial center according to Corollary 8.10 Moreover,
W (Γ, {Gv}v∈V ) is not finite since it contains a non-trivial free product. There exist unbounded
homogeneous Aut-invariant quasimorphisms on WΓ = W (Γ, {Gv}v∈V ) and RΓ according to
Theorem 9.27 and Proposition 9.23. Since [ŴΓ,WΓ] ≤ WΓ and [R̂Γ, RΓ] ≤ RΓ have finite
index by Proposition 11.12 these quasimorphisms are unbounded on [ŴΓ,WΓ] and [R̂Γ, RΓ]
respectively. Therefore, Lemma 11.2 implies the result.

12 Open questions
There are various open questions that could be investigated further. The most immediate ones
are whether Zk = Z/2 ∗ · · · ∗ Z/2 and the free group Fk admit unbounded Aut-invariant quasi-
morphisms for any k ≥ 3.
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It has been shown in [BrMa19] that Fk does admit unbounded Aut-invariant norms for any
k ≥ 3, which is a necessary condition for the existence of unbounded Aut-invariant quasimor-
phisms by Lemma 2.9. However, despite extensive studies of Aut(Fk) it remains unknown
whether any free group of rank k ≥ 3 admits an unbounded Aut-invariant quasimorphism
[BrMa19, Remark 5.2]. Brandenbursky and Marcinkowski construct their Aut-invariant quasi-
morphisms on F2 using the action of the mapping class group of punctured surface that only
happens to have finite index in Aut(F2g) for g = 1. Note that the case of free groups of higher
rank is complicated further by the fact that the projection maps Fk → Fk−1 are not invariant
under transvections.

For the case of Zk where k ≥ 3 note that proving the existence of an unbounded homo-
geneous Aut-invariant quasimorphism ψ for Zk and proving the non-existence of unbounded
Aut-invariant quasimorphisms forZk−1 implies the existence of unbounded Aut-invariant quasi-
morphisms on Zm for all m ≥ k. In fact, the averaging procedure outlined in Lemma 2.21
applied to ψ ◦ p where p denotes the projection Zm → Zk onto the first k free factors will
produce an Aut-invariant quasimorphism on Zk. If every Aut-invariant quasimorphism on Zk−1

is bounded, then ψ̂ ◦ p will restrict to a linear multiple of ψ on the first k-factors which proving
unboundedness.

Finally, in the realm of graph products it is natural to ask questions about the existence
of unbounded Aut-invariant quasimorphisms on graph products W for more general vertex
groups or for underlying graphs with infinite vertex sets. However, a general description of the
automorphism group of such graph products similar to the one given in in Section 8.2 from
[CoGu09] for finitely generated abelian vertex groups and finite graphs is not known to the
author of this thesis. Nevertheless, since the description of the automorphism group of free
products coming from [FoRa40] and [FoRa41] holds for all freely indecomposable factors, it
seems very plausible that our arguments apply to a larger class of graph products since the Aut-
invariant quasimorphisms we construct arise from Aut0-invariant projections to free products.

In a larger context the question on the cup product structure in the second bounded coho-
mology of free products has recently gained attention. It is conjectured that the cup product map
` : H2

b (F2,R) × Hk
b (F2,R) → Hk+2

b (F2,R) is trivial for all k. In the case where k = 2 the
above conjecture is known to be true for coboundaries of Brooks quasimorphisms by [BuMo18]
and Rolli quasimorphisms by [Heu17], in which Heuer makes use of a specific decomposabil-
ity condition that is called ∆-decomposability. Furthermore, it is known for certain infinite
sums of Brooks quasimorphisms by Francesco Fournier-Facio [Fou20]. A stronger triviality
result for ∆-decomposable quasimorphisms concerning higher k has recently been proven in
[AmBu21]. Currently, to the best knowledge of the author nothing is known for the cup product
of coboundaries of code quasimorphisms and little is known about the cup product structure
on general free products or graph products. Thus, it seems desirable to the author to attempt
explicit computations regarding code quasimorphisms and their pullbacks to graph products.

Appendix A:
Aut-invariant Brooks quasimorphisms on free products
In this appendix we show that for a free product of two finite non-isomorphic groups un-
bounded Aut-invariant quasimorphisms can be constructed purely from Brooks counting quasi-
morphisms without any additional constructions of codes.

LetA andB be two non-isomorphic finite groups and letG = A∗B. By Lemma 3.4 Out(G)
is generated by the images of Aut(A) and Aut(B) acting as factor automorphisms. Since
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Aut(A) and Aut(B) commute in Aut(G) we have that a set of representatives of Out(G) is
given by products of factor automorphisms ofA andB. Thus, |Out(G)| ≤ |Aut(A)×Aut(B)|
is finite. Letw ∈ G be a cyclically reduced word and denote by fBrw : G→ R Brooks’s counting
quasimorphism that counts the difference of disjoint occurrences of w and disjoint occurrences
of w−1 inside any word. It is clear that for any factor automorphism ϕ ∈ Aut(G) the equality

fBrϕ(w)(ϕ(g)) = fBrw (g)

holds for all g ∈ G. Consequently, all automorphisms ϕ0 ∈ Aut(A) × Aut(B) ⊂ Aut(G)
satisfy fBrϕ0(w)(g) = fBrw (ϕ−1

0 (g)) for all g ∈ G. Define ψBrw : G→ R by

ψBrw =
∑

ϕ∈Aut(A)×Aut(B)

fBrϕ(w),

where the finiteness of Aut(A)×Aut(B) is crucial. Then ψBrw is a finite sum of Brooks counting
quasimorphisms on G. Moreover, for θ ∈ Aut(A)× Aut(B) we calculate for g ∈ G that

ψBrw (θ(g)) =
∑

ϕ∈Aut(A)×Aut(B)

fBrϕ(w)(θ(g))

=
∑

ϕ∈Aut(A)×Aut(B)

fBr(θ−1◦ϕ)(w)(g)

=
∑

ϕ′∈Aut(A)×Aut(B)

fBrϕ′(w)(g)

= ψBrw (g).

Lemma 12.1. Let w be a cyclically reduced word and let A,B be two non-isomorphic non-
trivial finite groups. Then the homogenisation ψ̄Brw of ψBrw is an Aut-invariant quasimorphism
on A ∗B that is a finite sum of homogenisations of Brooks counting quasimorphisms.

Proof. The calculation above proves invariance of ψBrw under Aut(A) × Aut(B) which con-
tains a set of representatives of Out(A ∗ B) according to Lemma 3.4. So by Lemma 2.19 the
quasimorphism ψ̄Brw is invariant under all automorphisms of A ∗B.

It remains to verify that not all quasimorphisms of the form ψ̄Brw are bounded. If A and B
are not isomorphic and both non-trivial at least one of them has cardinality ≥ 3. Let us assume
that |A| ≥ 3 and choose distinct non-trivial a0, a1 ∈ A. Let b ∈ B be non-trivial and consider
the word

x = a0ba1ba1ba0ba0ba0ba1ba1ba1ba1b.

Proposition 12.2. Let A,B be two non-isomorphic non-trivial finite groups where |A| ≥ 3.
Then ψ̄Brx is an unbounded Aut-invariant quasimorphism on A ∗ B that is a finite sum of ho-
mogenisations of Brooks’s counting quasimorphisms for any choice of x as above.

Proof. Let ϕ ∈ Aut(A) × Aut(B) and let ϕ(ai) = a′i ∈ A for i ∈ {1, 2} and ϕ(b) = b′ ∈ B.
Then we have

ϕ(x) = a′0b
′a′1b

′a′1b
′a′0b

′a′0b
′a′0b

′a′1b
′a′1b

′a′1b
′a′1b

′.
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The particular forms of ϕ(x) and xn implies that ϕ(x)−1 can never occur as a subword in the
reduced word xn for all n ∈ N. Thus, we have that

ψBrx (xn) =
∑

ϕ∈Aut(A)×Aut(B)

fBrϕ(x)(x
n) ≥ fBrx (xn) = n.

Consequently ψ̄Brx (x) ≥ 1 and therefore the homogeneous Aut-invariant quasimorphism ψ̄Brx is
unbounded.

We note that the above choice of x satisfies A-code(x) = (1, 2, 3, 4). In fact, any choice for
x of the above kind representing a generic code of even length will yield an unbounded Aut-
invariant quasimorphism. The following example shoes that some assumption on x is necessary
in general.

Example 12.3. LetA = Z/3 andB = Z/2 so thatA∗B = PSL(2,Z). Then ψBrw is bounded for
the cyclically reduced word w = aba−1b where a ∈ A and b ∈ B are non-trivial. Up to a cyclic
permutation every element g of infinite order in A ∗ B can be written as g = a0ba1b . . . akb
for some k ≥ 1. Then every occurrence of aba−1b in ba1 . . . akb corresponds uniquely to an
occurrence of w−1 = baba−1 in ba1 . . . akb. Thus, |fBrw (g)| ≤ 1 and therefore f̄Brw = 0. Note
that this shows that f̄Brθ(w) = 0 for θ ∈ Aut(Z/3) as well. Consequently,

ψ̄Brw =
∑

ϕ∈Aut(A)×Aut(B)

f̄Brϕ(w) = f̄Brw + f̄Brϕ(w) = 0.

Appendix B: B3, SL(2,ZZZ) and PSL(2,ZZZ)
The purpose of this appendix is to prove in Proposition 12.6 that the spaces of homogeneous
Aut-invariant quasimorphisms on the braid group B3 and the projective linear group PSL(2,Z)
are in fact isomorphic. Then we generalise this slightly in Proposition 12.7 to include the
case of SL(2,Z). For this we first need the following general lemma about how homogeneous
quasimorphisms can descend to quasimorphisms on the quotient of a group by which we mean
that they form a commutative diagram through the quotient projection.

Lemma 12.4. Let H ≤ G be a subgroup and ϕ : G→ R be a quasimorphism. If ϕ is bounded
on H , then its homogenisation ϕ̄ descends to a homogeneous quasimorphism ϕ̄0 on G/H .
Moreover, if ϕ was Aut(G)-invariant, then ϕ̄0 is invariant under all automorphisms on G/H
induced by automorphisms of G.

Proof. LetC ≥ 0 be such that the absolute value of ϕ onH is bounded byC. Let p : G→ G/H
be the quotient projection. Define ϕ0 : G/H → R for g ∈ G/H by setting ϕ0(g) := ϕ(xg) for
a chosen preimage xg ∈ p−1(g). We claim that ϕ0 is a quasimorphism. Let g, h ∈ G/H . Then
p(xgh(xgxh)

−1) = gh(gh)−1 = 1 and so xgh(xgxh)−1 ∈ H . We calculate

|ϕ0(gh)− ϕ0(g)− ϕ0(h)| = |ϕ(xgh)− ϕ(xg)− ϕ(xh)|
= |ϕ(xgh(xgxh)

−1xgxh)− ϕ(xg)− ϕ(xh)|
≤ |ϕ(xgh(xgxh)

−1)|+ |ϕ(xgxh)− ϕ(xg)− ϕ(xh)|+Dϕ

≤ C + 2Dϕ.
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Thus ϕ0 is a quasimorphism on G/H . Moreover, since ϕ is bounded on H the homogenisation
ϕ̄0 is independent of the particular choice of representative xg for g ∈ G/H . We claim that
ϕ̄0 ◦ p = ϕ̄. Let x ∈ G. Then

|ϕ̄(x)− ϕ̄0(p(x))| =
∣∣∣∣limk∈N ϕ(xk)

k
− lim

k∈N

ϕ0(p(x)k)

k

∣∣∣∣
= lim

k∈N

1

k
· |ϕ(xk)− ϕ0(p(xk))|

= lim
k∈N

1

k
· |ϕ(xk)− ϕ(xp(xk)(x

k)−1xk)|

≤ lim
k∈N

1

k
·
(
|ϕ(xp(xk)(x

k)−1)|+Dϕ

)
= 0

since xp(xk)(x
k)−1 ∈ H .

Let f ∈ Aut(G) be an automorphism that descends to an automorphism f̄ of G/H via p
and suppose that ϕ̄ is invariant under f . We claim that ϕ̄0 is invariant under f̄ . Let y ∈ G/H
and let x ∈ G be such that p(x) = y. Then

ϕ̄0(f̄(y)) = ϕ̄0(f̄(p(x))) = ϕ̄0(p(f(x))) = ϕ̄(f(x)) = ϕ̄(x) = ϕ̄0(p(x)) = ϕ̄0(y).

Let us recall how B3 forms a central extension of PSL(2,Z). The standard presentation of
the braid group is given by

B3 = 〈σ1, σ2 | σ1σ2σ1 = σ2σ1σ2〉.

Setting x = σ1σ2 and setting y = σ1σ2σ1 we see that the braid relation implies x3 = y2. It
holds that σ1 = x−1y and σ2 = y−1x2. Since the relation x3 = y2 implies the braid relation B3,
we conclude that B3 admits the alternative presentation

B3 = 〈x, y | x3 = y2〉.

We define ρ : B3 → PSL(2,Z) = 〈x, y | x3 = 1 = y2〉 on generators by ρ(σ1) = x−1y and
ρ(σ2) = y−1x2. According to the second presentation of B3 we have ker(ρ) = 〈(σ1σ2)3〉 which
is the center of B3 by [Gar69].

Lemma 12.5. The projection map p : B3 → PSL(2,Z) which factors out the center of B3

induces a surjective automorphism Aut(B3)→ Aut(PSL(2,Z)).

Proof. Since p is surjective, it induces a surjective map on the subgroup of inner automorphisms
Inn(B3)→ Inn(PSL(2,Z). We know that Out(PSL(2,Z) = Out(Z/2 ∗ Z/3) is generated by
the non-trivial factor automorphism of Z/3. Indeed, since Z/2 and Z/3 are abelian, all partial
conjugations are actually conjugations. Moreover, there are no swap automorphisms and no
transvections on PSL(2,Z).

The non-trivial automorphism φ of B3 is given by inverting the standard generators σ1 and
σ2. Then with respect to the second presentation we have φ(y) = y−1 and

φ(x) = σ−1
1 σ−1

2 = (x−1y)−1(y−1x2)−1 = y−1x−1y.
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Thus, the automorphism φ̄ ∈ Aut(PSL(2,Z) induced by φ is defined by its images on the
generators φ̄(y) = y and φ̄(x) = y−1x−1y. Therefore, φ̄ is equal to the non-trivial factor auto-
morphisms mapping x→ x−1 followed by conjugation by y−1 on PSL(2,Z). Consequently, the
induced map p∗ : Out(B3) → Out(PSL(2,Z) ∼= Z/2 maps the automorphism ψ ∈ Out(B3)
to the non-trivial element of Z/2 implying that p is surjective.

Proposition 12.6. The spaces of homogeneous Aut-invariant quasimorphisms on PSL(2,Z)
and B3 are isomorphic.

Proof. Every Aut-invariant quasimorphism on PSL(2,Z) gives rise to an Aut-invariant quasi-
morphism on B3 by composition with the projection map according to Lemma 2.23. Con-
versely, since the non-trivial outer automorphism of B3 inverts its center, every homogeneous
Aut-invariant quasimorphism ψ on B3 vanishes on Z(B3) = 〈(σ1σ2)3〉. By Lemma 12.4 ψ
descends to a homogeneous quasimorphism ψ̄ invariant under all automorphisms on PSL(2,Z)
that are induced by automorphisms of B3. By Lemma 12.5 this means that ψ̄ is in fact invariant
under all automorphisms of PSL(2,Z). The construction given in Lemma 12.4 is an inverse to
the precomposition with the projection map.

Consider the amalgamated product Gq = Z/2q ∗Z/q Z/3q for q ≥ 2 where Z/q ≤ Z/pq via
multiplication by p for p = 2, 3. Recall that SL(2,Z) = G2. Then Z(Gq) = Z/q is the center
of Gq, since the quotient Gq/(Z/q) = Z/2 ∗ Z/3 = PSL(2,Z) has trivial center. Moreover.
the automorphism ι ∈ Aut(Gp) defined by inverting the generators of both cyclic factors in-
verts the center and descends to the non-trivial factor automorphism on Z/2 ∗ Z/3. Thus, the
map Aut(Gq) → Aut(PSL(2,Z)) induced by the projection map is surjective. Repeating the
argument of the proof of Proposition 12.6 before, we conclude the following proposition.

Proposition 12.7. The spaces of homogeneous Aut-invariant quasimorphisms on PSL(2,Z),
B3 and Gq are isomorphic for all q ≥ 1.
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