Strongly bounded groups (in progress)

Jarek Kędra and Assaf Libman

University of Aberdeen

The IMU meeting, Dead Sea, June 2016.

One of my personal motivations (M, ω) – a closed symplectic manifold. G – a group.

Is there an inclusion?

Investigate conj. inv. norms, find restrictions, find invariants... → Ham(M,ω)

Hofer's norm: conjugation invariant, nondiscrete, unbounded, separable...

Definitions and notation

G − a group.
 C(g) − the conjugacy class of g.
 S − a symmetric conjugation invariant subset.
 The number of conjugacy classes in S:

 $\#S = \min\left\{n \in \mathbb{N} \mid S = \bigcup_{i=1}^{n} C\left(g_{i}^{\pm 1}\right)\right\}$

Standing assumption:

G is generated by *S* such that $\#S < \infty$.

Examples: finitely generated, simple, semisimple Lie, infinite braid, $\text{Diff}_0(M)$, $\text{Ham}(M, \omega)$...

Definitions and notation

▷ The word norm:

 $\|g\|_S = \min \left\{ n \in \mathbb{N} \, | \, \overline{g = s_1 \cdots s_n \,, s \in S} \right\}$

▷ The diameter: $\delta(S) = \sup_g \|g\|_S$.
 ▷ The sup-diameter:

 $\Delta_k(G) = \sup \left\{ \delta(S) \, | \, \#S < k+1 \right\}.$

▷ Inequalities:

 $0 \leq \Delta_1(G) \leq \Delta_2(G) \leq \cdots \leq \Delta_\infty(G) \leq \infty.$

Boundedness

$0 \leq \overline{\Delta_1(G)} \leq \overline{\Delta_2(G)} \leq \cdots \leq \overline{\Delta_{\infty}(G)} \leq \infty.$

 \triangleright G is bounded if $\delta(S) < \infty$. \triangleright *G* is *strongly* bounded if \ldots $\exists k \quad \Delta_k(G) < \infty$. \triangleright *G* is *uniformly* bounded if $\ldots \Delta_{\infty}(G) < \infty$.

Examples.

 \triangleright SL(3, Z) is bounded. \triangleright Diff^c₀(\mathbb{R}^n) is bounded. [Burago-Ivanov-Polterovich]

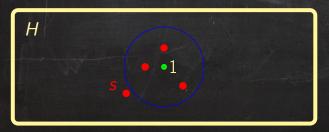
[Elementary bounded generation] \triangleright G - simple \implies $\Delta_1(G) = \Delta_{\infty}(G)$.

Nonsqueezing Lemma

Assume:

(H, ν) – a group with a conj. invariant norm
 G → (H, ν) – an injective homomorphism
 S ⊂ G and #S < k + 1.
 Then:

 $\max_{s \in S} \nu(s) \geq \frac{\mathsf{diameter}(G, \nu)}{\Delta_k(G)}$



At least one generator has to be away from the identity. Application: Hamiltonian actions $ightarrow G
ightarrow (H, \nu)$ – as above.

Corollary. If G is uniformly simple then the ν -topology is discrete on G.

Corollary. If $G \subset \text{Ham}(M, \omega)$ is uniformly simple then it is countable. *Proof:* The Hofer topology is separable.

Examples

 $\Delta_{\infty}(\mathsf{SL}(n,\mathbb{R})) = O(n^2)$ uniformly bounded. \triangleright $\Delta_1(SO(3)) = \infty$ not strongly bounded. \triangleright $\Delta_{\infty}(\mathsf{SL}(n,\mathbb{Z}))=\infty$ not uniformly bounded. \triangleright $\Delta_k(\mathsf{SL}(n,\mathbb{Z})) = O(n^2k)$ strongly bounded. \triangleright $\Delta_k(SO(3,\mathbb{Z}[1/5])) = \infty$... not strongly bounded. \triangleright Assume: \triangleright • \Re – ring with *m* maximal ideals; • $SL(n, \Re)$ – elementary boundedly generated Then: $\Delta_{\infty}(\mathsf{SL}(n,\mathfrak{R})) \leq \Delta_m(\mathsf{SL}(n,\mathfrak{R})).$

 $\Delta_{\infty}(\mathsf{SL}(n,\mathfrak{R})) < \infty$ uniformly bounded.

Theorem

Assume:

ℜ – a principal ideal domain,
 SL(n,ℜ) – elementary bounded generation,
 Then:

 $\Delta_k(\mathsf{SL}(n,\mathfrak{R})) \leq (8n+4)kb.$

Example.

 $\Delta_{\infty}(\mathsf{PSL}(n,p^m)) \leq (8n+4)(4n-1).$

A special case of [Liebeck-Shalev]

Application: Hamiltonian actions \triangleright $(M, \omega) =$ a closed symplectic manifold. Recall: A uniformly simple group $G \subset \text{Ham}(M, \omega)$ is countable.

The following groups cannot be subgroups of Ham (M, ω) : > simple noncompact Lie, [Delzant for smooth actions]

some groups acting on linear orders,

[uniform simplicity due to Gal-Gismatullin-Lazarovich]

 \triangleright SL (n, \mathfrak{R}) for a suitable ring \mathfrak{R} ,

▷ Diff₀(S¹). [uniform simplicity due to Tsuboi]

Open problem

Is there a closed symplectic manifold (M, ω) such that

$SL(3,\mathbb{Z}) \subset Ham(M,\omega)$?

Remarks: ▷ No, if (M, ω) is a closed surface. [Polterovich] ▷ SL $(3, \mathbb{Z}) \subset \operatorname{Ham}(M, \omega)$ for some noncompact M. ▷ SL $(3, \mathbb{Z}) \subset \operatorname{Diff}_0(M, \operatorname{vol})$ for some closed M.

