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In this talk I will present some restrictions on the topology of a

monotone odd dimensional Lagrangian submanifold of the standard

symplectic Euclidean space.

L ↪→ Cn

Essentially, a monotone lagrangian in Cn cannot have too
complicated topology. For example, it can’t admit a metric of
negative curvature, in dimension three it has to be a product
S1 × Σ and, in general, its simplicial volume has to be zero.
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Symplectic vector space and the lagrangian grassmannian

• (V , ω) - symplectic vector space: V is a real 2n-dimensional
vector space and ω is a nondegenerate skew-symmetric bilinear
form.

• For example, Cn and ω =
∑

dx i ∧ dy i .

• Every symplectic vector space is isomorphic to the above
example.

• A subspace L ⊂ Cn is called Lagrangian if the symplectic form
ω vanishes on L and dim L = n.

• For example, every real line on the plane C is Lagrangian.



. . . lagrangian grassmannian

• The space of all Lagrangian subspaces in Cn is called
Lagrangian grassmannian and it is denoted by Λ(n).

• Exercise: Λn = U(n)/O(n).

• Consequently:

π1(Λn) = H1(Λn; Z) = H1(Λn; Z) = Z.

• The square of the determinant:

det2 : Λn → S1 ⊂ C×

defines a bundle SU(n)/SO(n)→ Λn → S1 and the pullback
of the length form on the circle represents a generator
µ ∈ H1(Λn; Z) called the universal Maslov class.



Symplectic manifolds and Lagrangian submanifolds

• (M, ω) is called a symplectic manifold if M is a smooth
manifols and ω is nondegenerate and closed two-form.

• (TpM, ωp) is a symplectic vector space.

• If ω = dα then (M, dα) is called exact.

• For example, (Cn, dx i ∧ dy i = d(x idy i )) is exact.

• An immersion f : L→ M is called Lagrangian if f ∗ω = 0 and
dim L = 1

2 dimM. In such a case, df (TxL) ⊂ Tf (x)M is a
Lagrangian subspace is the symplectic vector space.

• For example, any one-dimensional immersion is Lagrangian in
a symplectic surface.

• The standard sphere S2 ⊂ R3 ⊂ C2 is not a Lagrangian
submanifold.



Lagrangians in Cn

(Cn, ω =
∑

dx i ∧ dy i = dα) - the standard symplectic space

• f : L→ Cn a Lagrangian immersion.

• 0 = f ∗ω = f ∗dα = df ∗α [f ∗α] ∈ H1(L; R).

• Gf : L→ Λn – the Gauss map µf := f ∗µ ∈ H1(L; Z).

Monotonicity:

[f ∗α] = K · µf

for some K > 0.

If K = 0 then L is called exact.

Gromov proved that there are no exact Lagrangian embeddings into
Cn. In particular, there are no Lagrangian embeddings of simply
connected manifolds.



Theorem

Theorem [Evans–K.]

Let L be a closed oriented spin odd-dimensional manifold which is a
connected sum of aspherical manifolds. If f : L→ Cn is a
monotone Lagrangian embedding then there exists a smooth map

S1 ×M → L

of nonzero degree, where M is an oriented closed manifold.

Corollary

• There exists a surjection Z× Γ→ π1(L); in particular π1(L)
has infinite centre.

• π1(L) is not hyperbolic.

• L does not admit a Riemannian metric of negative curvature.
Remark: Eliashberg and Viterbo obtained the last statement
without the monotonicity assumption.



Corollary

• Every summand of L has vanishing simplicial volume.

• If dim L = 3 then L = S1 × Σ. Remark: Fukaya obtained the
same statement without the monotonicity assumption but
assuming that L is prime.

• If f : L→ C3 is a Lagrangian immersion with k double points
then resolving the double points can produce a monotone
embedding only if L = S3 and k = 1.



The strategy of the proof

We have a monotone Lagrangian embedding:

f : L→ Cn.

Let M0,1(a, J) denote the moduli space of J-holomorphic discs in
Cn with the boundary on L and with one marked boundary point
such that the boundary represents a free homotopy class a. There
exists a free homotopy class a of loops in L such that the
evaluation map

ev : M0,1(a, J)→ L

has nonzero degree. To obtain this statement we use a result of
Damian [Commentari Math. Helv. 87] which implies that for any J
and for any x ∈ L there exists a J-holomorphic dics u : D2 → Cn

with boundary on L passing through x such that

〈µf , u(∂D2)〉 = 2.



The strategy of the proof

The moduli space M0,1(a, J) admits a free circle action (rotate the
source) with the quotient M0,0(a, J) – the moduli space of
J-holomorphic discs representing a. There exists a finite cover
M0,0(a, J)→M0,0(a, J) such that

M0,0(a, J)× S1 //

��

M0,1(a, J)

��

ev // L

M0,0(a, J) //M0,0(a, J)

The composition of the maps in the top row gives the required map
of nonzero degree.



Examples of monotone Lagrangian embeddings

Monotone Lagrangian immersions obey the h-principle.

Theorem

If f : L→ Cn is a K -monotone Lagrangian immersion and
e : K → Cm be a K -monotone Lagrangian embedding. Then there
is a monotone Lagrangian embedding

K × L→ Cm+n.

Example

• Let Σ be a closed oriented surface. It admits a monotone
Lagrangian immersion into C2 and hence Σ× S1 admits a
monotone Lagrangian embedding into C3.

• If M is a closed oriented three manifold then M × S1 admits a
monotone Lagrangian embedding into C4.



Thank you for listening!


